

October 1986 Revised March 2000

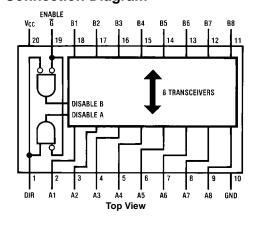
DM74AS640 3-STATE Octal Bus Transceiver

General Description

This advanced Schottky device contains 8 pairs of 3-STATE logic elements configured as octal bus transceiver. This circuit is designed for use in memory, microprocessor systems and in asynchronous bidirectional data buses. This device transmits data from the A bus to the B bus, or vice versa, depending upon the logic level of the direction control input (DIR). The enable input $(\overline{\rm G})$ can be used to disable the devices, effecting isolation of buses A and B.

The 3-STATE circuitry also contains a protection feature that prevents these transceivers from glitching the bus during power-up or power-down.

Features


- Switching specifications at 50 pF
- \blacksquare Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- Functionally and pin for pin compatible with Schottky, low power Schottky, and advanced low power Schottky TTL counterpart
- Improved AC performance over Schottky, low power Schottky, and advanced low power Schottky counterparts
- 3-STATE outputs independently controlled on A and B buses
- \blacksquare Low output impedance drive to drive terminated transmission lines to 133 $\!\Omega$
- Specified to interface with CMOS at V_{OH} = V_{CC} 2V

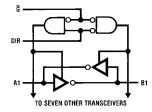
Ordering Code:

Order Number	Package Number	Package Description
DM74AS640WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
DM74AS640N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table


Contro	l Inputs	Operation		
G	DIR	Operation		
L	L	B Data to A Bus		
L	Н	A Data to B Bus		
Н	X	Isolation		

H = HIGH Logic Level

L = LOW Logic Level

X = Immaterial

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V
Input Voltage
Control Inputs 7V
I/O Ports 5.5V

Operating Free Air Temperature Range 0° C to +70°C Storage Temperature Range -65° C to +150°C

Typical θ_{JA}

N Package 51.5°C M Package 69.0°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

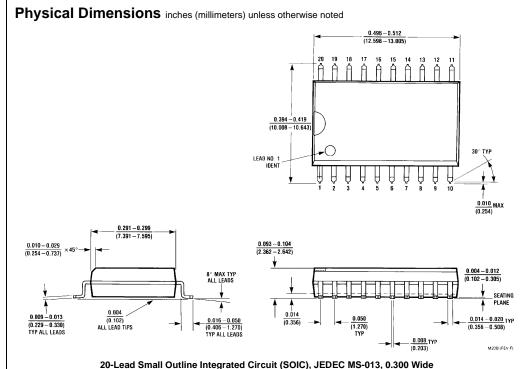
Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage	4.5	5	5.5	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{OH}	HIGH Level Output Current			-15	mA
I _{OL}	LOW Level Output Current			64	mA
T _A	Free Air Operating Temperature	0		70	°C

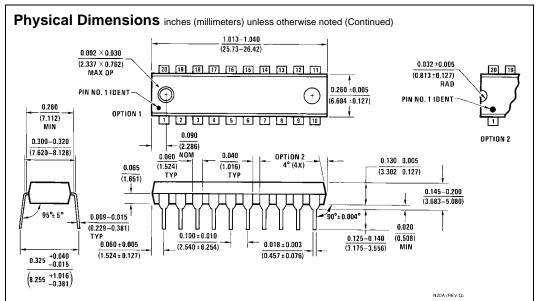
Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.2	V
V _{OH}	HIGH Level	$V_{CC} = 4.5V \text{ to } 5.5V, I_{OH} = -2 \text{ mA}$		V _{CC} – 2			V
	Output Voltage	$V_{CC} = 4.5V$, $I_{OH} = -3 \text{ mA}$		2.4			V
		V _{CC} = 4.5V, I _{OH} = Max		2.4			V
V _{OL}	LOW Level Output Voltage	V _{CC} = Min, I _{OL} = Max			0.35	0.55	V
I _I	Input Current at Max	$V_{CC} = Max, V_I = 7V,$				0.1	mA
	Input Voltage	(V _I = 5.5V for A or B Ports)				0.1	IIIA
I _{IH}	HIGH Level	V _{CC} = Max	Control Inputs			20	μА
	Input Current	V _I = 2.7V (Note 3)	A or B Ports			70	μΛ
I _{IL}	LOW Level	V _{CC} = Max,	Control Inputs			-0.5	mA
	Input Current	V _I = 0.4V (Note 3)	A or B Ports			-0.75	IIIA
Io	Output Drive Current	$V_{CC} = Max, V_O = 2.25V$		-50		-150	mA
I _{CCH}	Supply Current with Outputs HIGH	V _{CC} = Max			37	58	mA
I _{CCL}	Supply Current with Outputs LOW				78	123	mA
I _{CCZ}	Supply Current with Outputs in 3-STATE				51	80	mA


Note 2: All typicals are at $V_{CC} = 5.0V$, $T_A = 25$ °C.

Note 3: For I/O ports, the parameters I_{IH} and I_{IL} include the OFF-State output current, I_{OZH} and I_{OZL} .


Switching Characteristics

over recommended operating free air temperature range (unless otherwise noted)

	Parameter	From	То	$V_{CC} = Min \text{ to } Max,$ $C_L = 50 \text{ pF}, R_1 = R_2 = 500\Omega$		Units
Symbol		(Input)	(Output)			
				Min	Max	
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	A or B	B or A	2	7	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	A or B	B or A	2	6	ns
t _{PZH}	Output Enable Time to HIGH Level Output	G	A or B	2	8	ns
t _{PZL}	Output Enable Time to LOW Level Output	G	A or B	2	10	ns
t _{PHZ}	Output Disable Time from HIGH Level Output	G	A or B	2	8	ns
t _{PLZ}	Output Disable Time from LOW Level Output	G	A or B	2	13	ns

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide Package Number M20B

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com