- BiCMOS Technology With Low Quiescent Power
- 3-State Outputs Drive Bus Lines Directly
- Buffered Inputs
- Noninverted Outputs
- Input/Output Isolation From V_{CC}
- Controlled Output Edge Rates
- 48 -mA Output Sink Current
- Output Voltage Swing Limited to 3.7 V
- SCR Latch-Up-Resistant BiCMOS Process and Circuit Design
- Package Options Include Plastic Small-Outline (M) and Shrink Small-Outline (SM) Packages and Standard Plastic (E) DIP

description

The CD74FCT374 is an octal, edge-triggered, D-type flip-flop that uses a small-geometry BiCMOS technology and features 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. This device is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The output stage is a combination of bipolar and CMOS transistors that limits the output high level to two diode drops below V_{Cc}. This resultant lowering of output swing (0 V to 3.7 V) reduces power-bus ringing [a source of electromagnetic interference (EMI)] and minimizes V_{CC} bounce and ground bounce and their effects during simultaneous output switching. The output configuration also enhances switching speed and is capable of sinking 48 mA .
The eight flip-flops enter data into their registers on the low-to-high transition of the clock (CLK). The output-enable $(\overline{\mathrm{OE}})$ input controls the 3-state outputs and is independent of the register operation. When $\overline{\mathrm{OE}}$ is high, the outputs are in the high-impedance state.
A buffered $\overline{\mathrm{OE}}$ input can be used to place the eight outputs in either a normal logic state (high or low) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without interface or pullup components.
$\overline{\mathrm{OE}}$ does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{Cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The CD74FCT374 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
c
FUNCTION TABLE
(each flip-flop)

INPUTS			
OUTPUT			
$\overline{\text { OE }}$	CLK	D	Q
L	\uparrow	H	H
L	\uparrow	L	L
L	H or L	X	Q_{0}
H	X	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Continuous current through GND ... 400 mA
Package thermal impedance, θ_{JA} (see Note 1): E package .. $69^{\circ} \mathrm{C} / \mathrm{W}$
M package ... $58^{\circ} \mathrm{C} / \mathrm{W}$
SM package .. $70^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $T_{\text {stg }}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions (see Note 2)

		MIN	MAX
	UNIT		
V_{CC}	Supply voltage	4.75	5.25
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2	V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage	V	
V_{I}	Input voltage	0	$\mathrm{~V}_{\mathrm{CC}}$
V_{O}	Output voltage	0	V
I_{OH}	High-level output current	V_{CC}	V
IOL	Low-level output current	-15	mA
$\Delta \mathrm{I} / \Delta \mathrm{V}$	Input transition rise or fall rate	0	48
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	mA	

NOTE 2: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	MAX	UNIT
			MIN MAX	MIN MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{I}=-18 \mathrm{~mA}$	4.75 V	-1.2	-1.2	V
V_{OH}	$\mathrm{OH}=-15 \mathrm{~mA}$	4.75 V	2.4	2.4	V
V_{OL}	$\mathrm{IOL}=48 \mathrm{~mA}$	4.75 V	0.55	0.55	V
II	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	5.25 V	± 0.1	± 1	$\mu \mathrm{A}$
IOZ	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND	5.25 V	± 0.5	± 10	$\mu \mathrm{A}$
los ${ }^{\ddagger}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND, $\quad \mathrm{V}_{\mathrm{O}}=0$	5.25 V	-60	-60	mA
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or $\mathrm{GND}, \quad \mathrm{I} \mathrm{O}=0$	5.25 V	8	80	$\mu \mathrm{A}$
${ }^{\mathrm{I}} \mathrm{CC}$ §	One input at 3.4 V , Other inputs at V_{CC} or GND	5.25 V	1.6	1.6	mA
C_{i}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND		10	10	pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND		15	15	pF

[^0]timing requirements over recommended operating conditions, (unless otherwise noted) (see Figure 1)

			MIN	MAX	UNIT
$\mathrm{f}_{\text {clock }}$	Clock frequency			70	MHz
$\mathrm{t}_{\text {w }}$	Pulse duration	CLK high or low	7		ns
$\mathrm{t}_{\text {su }}$	Setup time	Data before CLK \uparrow	2		ns
th	Hold time	Data after CLK \uparrow	2		ns

switching characteristics over recommended operating conditions, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.25 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	MIN	MAX	UNIT
			TYP			
$f_{\text {max }}$				70		MHz
$t_{\text {pd }}$	CLK	Q	6.6	2	10	ns
ten	$\overline{\mathrm{OE}}$	Q	9	1.5	12.5	ns
$t_{\text {dis }}$	$\overline{\mathrm{OE}}$	Q	6	1.5	8	ns

noise characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {OL(P) }}$	Quiet output, maximum dynamic V_{OL}		1		V
$\mathrm{V} \mathrm{OH}(\mathrm{V})$	Quiet output, minimum dynamic V_{OH}		0.5		V
$\mathrm{V}_{\mathrm{IH}(\mathrm{D})}$	High-level dynamic input voltage	2			V
V IL(D$)$	Low-level dynamic input voltage			0.8	V

operating characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ}$

PARAMETER	TEST CONDITIONS	TYP	UNIT
$\mathrm{C}_{\text {pd }}$ Power dissipation capacitance	No load, $\mathrm{f}=1 \mathrm{MHz}$	33	pF

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR TOTEM-POLE OUTPUTS

TEST	S1
tPLH/tPHL	Open
tpLz/tpZL	7 V
tPHZ/tPZH	Open
Open Drain	7 V

VOLTAGE WAVEFORM INPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}$ and $\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one input transition per measurement.
E. tPLZ and tPHZ are the same as $\mathrm{t}_{\text {dis }}$.
F. tpZL and tPZH are the same as ten.
G. $\mathrm{tPHL}^{\text {and tPLH }}$ are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

[^0]: \ddagger Not more than one output should be tested at a time, and the duration of the test should not exceed 100 ms .
 \S This is the increase in supply current for each input at one of the specified TTL voltage levels rather than $0 \vee$ or $V_{C C}$.

