LMC6009

LMC6009 9 Channel Buffer Amplifier for TFT-LCD

Literature Number: SNOS786A

May 1999

18

3.5 mA

3 µs

9

1

LMC6009 9 Channel Buffer Amplifier for TFT-LCD **General Description**

The LMC6009 is a CMOS integrated circuit that buffers 9 reference voltages for gamma correction in a Thin Film Transistor Liquid Crystal Display (TFT-LCD). Guaranteed to operate at both 3.3V and 5V supplies, this integrated circuit contains nine, independent unity gain buffers that can source 130 mA into a capacitive load without oscillation.

The LMC6009 is useful for buffering gamma voltages into column drivers that employ the resistor-divider architecture. High output current capability and fast settling characteristics of this device improve display quality by minimizing rise time errors at the outputs of the column driver. The integration of nine buffers and a multiplexer eliminates the need for discrete buffers and a separate multiplexer (MUX) chip on the panel.

The LMC6009 is available in 48-pin surface mount TSSOP.

Features

- Number of inputs
- 3.3V and 5V operation
- Supply current
- Settling time
- A/B channel inputs for asymmetrical Gamma
- Number of outputs Number of control inputs
- Built-in thermal shutdown protection

Applications

- VGA/SVGA TFT-LCD drive circuits
- Electronic Notebooks
- Electronic Games
- Personal Communication Devices
- Personal Digital Assistants (PDA)

Application in VGA/SVGA TFT-LCD

Ordering Information

Package	Temperature Range	Transport Media	NSC Drawing
48-pin TSSOP	–20°C–+75°C		MTD48
	LMC6009MT		
	LMC6009MTX	Tape and Reel	

MC6009 9 Channel Buffer Amplifier for TFT-LCD

DS012533-1

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

$ND-0.3V \le V^+ \le$
V_{DD} +0.3 V_{DC}
–0.3 to +6.5 V _{DC}
–20°C to +75°C
–55°C to +150°C

Maximum Junction Temperature (T _J)	+150°C
Maximum Power Dissipation (PD)	1.09W

Operating Ratings (Note 1)

Supply Voltage	$2.7V \leq V_{DD} \leq 5.5V$
Frequency	DC-50 kHz
Thermal Resistance (θ_{JA})	
Derating	8.70 mW/°C

3V DC Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for T_J = 25°C, and V_{DD} = 3.0 V_{DC}

0	Denementan		Min	Tur	Mari	11
Symbol	Parameter	Conditions	IVIIN	тур	Max	Units
V _{DD}	Supply Voltage		2.7	3.0	3.3	V
Vos	Offset Voltage	$R_{s} = 10k$			20	mV
I _B	Input Bias Current				1500	nA
V _{OL}	Output Voltage, Low	Amp A8 and A9			GND +	V
		I _{SINK} = 13 mA			0.2	v
		Amp A1–A7			GND +	V
		I _{SINK} = 13 mA			0.6	v
V _{OH}	Output Voltage, High	Amp A1 and A2	$V_{0.2}$			V
		I _{SOURCE} = 13 mA	VDD 0.2			· ·
		Amp A3–A9	V06			V
		I _{SOURCE} = 13 mA	VDD 0.0			v
I _{sc}	Output Short Circuit Current	V _{OUT} - 1.65V (Note 1)	80	150		mA
I _{DD}	Supply Current	No Load		3.5	5	mA
ΔV_L	Load Regulation	$V_{IN} = 0.3 - 3 V_{DC}$			_10	m\/
		I _{SOURCE} = 13 mA			-10	
		I _{SINK} = 13 mA			+10	mV
V _{IH}	A/B Switch Logic Voltage, High	Select A	2			V
V _{IL}	A/B Switch Logic Voltage, Low	Select B			0.8	V
I _{IH}	A/B Switch Logic Current, High				1.5	μA
IIL	A/B Switch Logic Current, Low				1	μA
Av	Voltage Gain		0.985			V/V

Note 1: See Test Circuit (Figure 2)

5V DC Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $T_{\rm J}$ = 25 $^{\circ}C$, and $V_{\rm DD}$ = 5 $V_{\rm DC}.$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{DD}	Supply Voltage		4.5	5	5.5	V
Vos	Offset Voltage	$R_{s} = 10k$			20	mV
I _B	Input Bias Current				1500	nA
V _{OL}	Output Voltage, Low	Amp A8 and A9 I _{SINK} = 20 mA			GND + 0.2	V
		Amp A1–A7 I _{SINK} = 20 mA			GND + 1.0	V
V _{OH}	Output Voltage, High	Amp A1 and A2 I _{SOURCE} = 20 mA	V _{DD} -0.2			V
		Amp A3–A9 I _{SOURCE} = 20 mA	V _{DD} -1.0			V
I _{SC}	Output Short Circuit Current	V _{OUT} - 1.65V (Note 1)	120	200		mA
I _{DD}	Supply Current	No Load		4.5	6	mA

5V DC Electrical Characteristics (Continued)

LMC6009

Unless otherwise specified, all limits are guaranteed for $T_J = 25^{\circ}C$, and $V_{DD} = 5 V_{DC}$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
ΔV_L	Load Regulation	$V_{IN} = 0.5-4.5 V_{DC}$ $I_{SOURCE} = 20 mA$			-10	mV	
		I _{SINK} = 20 mA			+10	mV	
V _{IH}	A/B Switch Logic Voltage, High	Select A	2			V	
V _{IL}	A/B Switch Logic Voltage, Low	Select B			0.8	V	
I _{IH}	A/B Switch Logic Current, High				1.5	μA	
IIL	A/B Switch Logic Current, Low				1	μA	
A _V	Voltage Gain		0.985			V/V	

AC Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $T_J = 25^{\circ}C$, and $V_{DD} = 3 V_{DC}$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
T _{S1}	Settling Time 1 (Note 2)	I _{DC} = 13 mA (Sink/Source)		3	6	μs
T _{S2}	Settling Time 2 (Note 2)	I _{DC} = 13 mA (Sink/Source)		3	6	μs

Note 2: See test circuits (Figure 3, Figure 4 and Figure 5)

FIGURE 1. Rise and Fall Times at Outputs

LMC6009

AC Electrical Characteristics

(Continued)

FIGURE 3. A1: 13 mA Source only A2-A4: 13 mA Sink/Source

Description of Pins; LMC6009

FIGURE 5. A6–A8: 13 mA Sink/Source A9: 13 mA Sink Only

Pin 1	NC	Pin 25	NC
Pin 2	NC	Pin 26	NC
Pin 3	NC	Pin 27	NC
Pin 4	A1 in (A)	Pin 28	NC
Pin 5	A1 in (B)	Pin 29	A/B Switch
Pin 6	A2 in (A)	Pin 30	V _{DD} (C)
Pin 7	A2 in (B)	Pin 31	GND (C)
Pin 8	A3 in (A)	Pin 32	A9 out
Pin 9	A3 in (B)	Pin 33	A8 out
Pin 10	A4 in (A)	Pin 34	A7 out
Pin 11	A4 in (B)	Pin 35	A6 out
Pin 12	A5 in (A)	Pin 36	A5 out
Pin 13	A5 in (B)	Pin 37	GND (B)
Pin 14	A6 in (A)	Pin 38	V _{DD} (B)
Pin 15	A6 in (B)	Pin 39	A4 out
Pin 16	A7 in (A)	Pin 40	A3 out
Pin 17	A7 in (B)	Pin 41	A2 out
Pin 18	A8 in (A)	Pin 42	A1 out
Pin 19	A8 in (B)	Pin 43	GND (A)
Pin 20	A9 in (A)	Pin 44	V _{DD} (A)
Pin 21	A9 in (B)	Pin 45	NC
Pin 22	NC	Pin 46	NC
Pin 23	NC	Pin 47	NC
Pin 24	NC	Pin 48	NC

Applications

The LMC6009 is useful for buffering the nine reference voltages for gamma correction in a TFT-LCD as shown in *Figure 7*. The A/B channel inputs allow the user to alternate two sets of gamma references to compensate for asymmetrical Gamma characteristic during Row Inversion. The LMC6009 eliminates the need for nine external switches or an 18-to-9 multiplexer.

Since the buffers in the LMC6009 draw extremely low bias current (1.5 μ A max), large resistance values can be used in the reference voltage string. This allows the power dissipation in the gamma reference circuit to be minimized. The nine buffers are guaranteed to deliver 80 mA to the load, allowing the pixel voltages of the TFT-LCD to settle very quickly.

LMC6009

Applications (Continued)

FIGURE 7.

Example: Below is a calculation of pixel charge time (for a black to black transition) in a VGA display operating at a vertical refresh rate of 60 Hz, with a panel capacitance of 50 pF per sub-pixel:

A full black to black transition represents the maximum charging time for the panel, since it requires that the panel capacitance be driven by a 4V swing from node V_{REF1} (*Figure 7*).

Total capacitive load presented to the LMC6009 is

C_L = 50 pF x 3 x 640 = 96 nF

Output current of the LMC6009 is:

 $I_{SC} = 80 \text{ mA}$

Hence, slew time $t_{SLEW} = (96 \text{ nF x 4V})/80 \text{ mA} = 3.07 \text{ }\mu\text{s}$

The total line time for a VGA system is approximately 34 μ s. Therefore, the LMC6009 easily meets the drive requirements for the application. The input resistance seen between the V_{REFn} and V_{REF(n+1)} inputs, (where n = 0 thru 8) of the Column Driver (*Figure 7*) also draw current from the LMC6009. Thus, the actual current available for charging the panel capacitance is:

Ipx = 80 mA - $(V_{VREF1} - V_{VREF2})/R_{CD}$ where

 $V_{V REFn}$ = Voltage at node V_{REFn} ,

 $V_{VREF(n+1)}$ = Voltage at node $V_{REF(n+1)}$, and

 R_{CD} = Column driver input resistance between

VREFn and VREF(n+1)

Since the LMC6009 is capable of sourcing 80 mA, the pixel charging time is primarily limited only by the length of the $R_{\rm CD}.$ $C_{\rm L}$ time constant. To implement a high quality display, column drivers that allow the shortest possible time constant (lower values of $R_{\rm CD}$) are desirable. However, lower values of $R_{\rm CD}$ result in increased system quiescent power dissipation. It is therefore important to optimize system performance by carefully considering speed vs power tradeoffs.

LMC6009

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated