- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Optimized for $1.8-\mathrm{V}$ Operation and is $3.6-\mathrm{V}$ I/O Tolerant to Support Mixed-Mode Signal Operation
- I ${ }_{\text {off }}$ Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max $t_{\text {pd }}$ of 1.8 ns at 1.8 V
- Low Power Consumption, 40- $\mu \mathrm{A}$ Max ICC
- $\pm 8-m A$ Output Drive at 1.8 V
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

description/ordering information

This 32-bit buffer/driver is operational at $0.8-\mathrm{V}$ to $2.7-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$, but is designed specifically for $1.65-\mathrm{V}$ to $1.95-\mathrm{V}$ $V_{C C}$ operation.
The SN74AUCH32244 is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.
The device can be used as eight 4-bit buffers, four 8-bit buffers, two 16 -bit buffers, or one 32 -bit buffer. It provides true outputs and symmetrical active-low output-enable ($\overline{\mathrm{OE}}$) inputs.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

This device is fully specified for partial-power-down applications using $I_{\text {off }}$ The $I_{\text {off }}$ circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

$\mathbf{T A}_{\mathbf{A}}$	PACKAGE		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	LFBGA - GKE	Tape and reel	SN74AUCH32244GKER	MK244

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

terminal assignments

	1	2	3	4	5	6
A	1Y2	1 Y 1	$1 \overline{\mathrm{OE}}$	$2 \overline{O E}$	1A1	1 A2
B	1 Y 4	1 Y 3	GND	GND	1A3	1A4
C	2 Y 2	2 Y 1	$V_{C C}$	V_{CC}	2A1	2 A 2
D	2 Y 4	2 Y 3	GND	GND	2 A 3	2 A 4
E	3 Y 2	3 Y 1	GND	GND	3A1	3 A 2
F	3Y4	3 Y 3	$V_{C C}$	$V_{C C}$	3A3	3A4
G	4Y2	4 Y 1	GND	GND	4A1	4 A 2
H	4Y3	4Y4	4 $\overline{\mathrm{OE}}$	3 $\overline{O E}$	4A4	4A3
J	5Y2	5 Y 1	$5 \overline{\mathrm{OE}}$	$6 \overline{\mathrm{OE}}$	5A1	5A2
K	5Y4	5 Y 3	GND	GND	5A3	5A4
L	6Y2	6 Y 1	$V_{\text {CC }}$	$V_{C C}$	6A1	6A2
M	6Y4	6 Y 3	GND	GND	6A3	6A4
N	7Y2	7 Y 1	GND	GND	7A1	7A2
P	7Y4	7Y3	$V_{C C}$	$V_{C C}$	7A3	7A4
R	8Y2	8 Y 1	GND	GND	8A1	8A2
T	8Y3	8 Y 4	8 $\overline{\mathrm{O}}$	$7 \overline{\mathrm{O}}$	8A4	8A3

FUNCTION TABLE (each 4-bit buffer)

INPUTS		OUTPUT
$\mathbf{~} \overline{\mathbf{O E}}$	\mathbf{A}	
L	H	H
L	L	L
H	X	Z

logic diagram (positive logic)

$2 \mathrm{D} 4 \mathrm{D6}$

$8 \mathrm{~A} 4 \xrightarrow{\mathrm{~T} 5} \mathrm{T2}$

SN74AUCH32244

32-BIT BUFFER/DRIVER

WITH 3-STATE OUTPUTS

SCES412B - SEPTEMBER 2002 - REVISED DECEMBER 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		0.8	2.7	V
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	V_{CC}		V
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.95 V	$0.65 \times \mathrm{V}_{\mathrm{CC}}$		
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7		
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$		0	V
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.95 V		$0.35 \times \mathrm{V}_{\mathrm{CC}}$	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		0.7	
V_{1}	Input voltage		0	3.6	V
V_{0}	Output voltage	Active state	0	V_{CC}	V
		3-state	0	3.6	
${ }^{\mathrm{O}} \mathrm{OH}$	High-level output current	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$		-0.7	mA
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$		-3	
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$		-5	
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$		-8	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		-9	
${ }^{\text {IOL }}$	Low-level output current	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$		0.7	mA
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$		3	
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$		5	
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$		8	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		9	
$\Delta t / \Delta v$	Input transition rise or fall rate	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$		20	ns / V
		$\mathrm{V}_{\mathrm{CC}}=1.3 \mathrm{~V}$		15	
		$\mathrm{V}_{\mathrm{CC}}=1.6 \mathrm{~V}, 1.95 \mathrm{~V}$, and 2.7 V		10	
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

[^0]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V_{Cc}	MIN TYP \dagger	MAX	UNIT
VOH	${ }^{\mathrm{I}} \mathrm{OH}=-100 \mu \mathrm{~A}$	0.8 V to 2.7 V	$\mathrm{V}_{\mathrm{CC}}-0.1$		V
	$\mathrm{I}^{\mathrm{OH}}=-0.7 \mathrm{~mA}$	0.8 V	0.55		
	$\mathrm{OH}=-3 \mathrm{~mA}$	1.1 V	0.8		
	$\mathrm{OH}=-5 \mathrm{~mA}$	1.4 V	1		
	$\mathrm{OH}=-8 \mathrm{~mA}$	1.65 V	1.2		
	$\mathrm{OH}=-9 \mathrm{~mA}$	2.3 V	1.8		
V_{OL}	$\mathrm{IOL}=100 \mu \mathrm{~A}$	0.8 V to 2.7 V		0.2	V
	$\mathrm{IOL}=0.7 \mathrm{~mA}$	0.8 V	0.25		
	$\mathrm{IOL}=3 \mathrm{~mA}$	1.1 V		0.3	
	$\mathrm{IOL}=5 \mathrm{~mA}$	1.4 V		0.4	
	$\mathrm{IOL}=8 \mathrm{~mA}$	1.65 V		0.45	
	$\mathrm{OL}=9 \mathrm{~mA}$	2.3 V		0.6	
II A or $\overline{\mathrm{OE}}$ inputs	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	0 to 2.7 V		± 5	$\mu \mathrm{A}$
${ }^{1} \mathrm{BHL}^{\ddagger}$	$\mathrm{V}_{1}=0.35 \mathrm{~V}$	1.1 V	10		$\mu \mathrm{A}$
	$\mathrm{V}_{1}=0.47 \mathrm{~V}$	1.4 V	15		
	$\mathrm{V}_{\mathrm{I}}=0.57 \mathrm{~V}$	1.65 V	20		
	$\mathrm{V}_{\mathrm{I}}=0.7 \mathrm{~V}$	2.3 V	40		
${ }^{1} \mathrm{BHH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}$	1.1 V	-10		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{I}}=0.9 \mathrm{~V}$	1.4 V	-15		
	$\mathrm{V}_{1}=1.07 \mathrm{~V}$	1.65 V	-20		
	$\mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}$	2.3 V	-40		
'BHLOI	$\mathrm{V}_{\mathrm{I}}=0$ to V_{CC}	1.3 V	75		$\mu \mathrm{A}$
		1.6 V	125		
		1.95 V	175		
		2.7 V	275		
	$\mathrm{V}_{\mathrm{I}}=0$ to V_{CC}	1.3 V	-75		$\mu \mathrm{A}$
		1.6 V	-125		
		1.95 V	-175		
		2.7 V	-275		
loff	$\mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$	0		± 10	$\mu \mathrm{A}$
IOZ	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND	2.7 V		± 10	$\mu \mathrm{A}$
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND}, \quad \mathrm{I} \mathrm{O}=0$	0.8 V to 2.7 V		40	$\mu \mathrm{A}$
C_{i}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND	2.5 V	3	4.5	pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND	2.5 V	4	7	pF

\dagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. $\mathrm{I}_{\mathrm{BHL}}$ should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.
\S The bus-hold circuit can source at least the minimum high sustaining current at $\mathrm{V}_{I H}$ min. $I_{B H H}$ should be measured after raising $\mathrm{V}_{I N}$ to V_{CC} and then lowering it to V_{IH} min.
IA An external driver must source at least IBHLO to switch this node from low to high.
\# An external driver must sink at least IBHHO to switch this node from high to low.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\mathrm{V}_{\text {cc }}=0.8 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} \\ \pm 0.1 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V} \\ \pm 0.1 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \\ \pm 0.15 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		UNIT
			TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
tpd	A	Y	5.4	0.8	2.8	0.6	1.9	0.7	1.3	1.8	0.5	1.8	ns
ten	$\overline{\mathrm{OE}}$	Y	8	1	4.4	0.7	2.6	0.8	1.4	2.5	0.6	1.9	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	Y	12	1.9	4.9	1	4.6	1.5	2.6	4	0.5	2	ns

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	UNIT	
			TYP	TYP	TYP	TYP	TYP			
C_{pd}	Power dissipation capacitance	Outputs enabled		$f=10 \mathrm{MHz}$	21	22	23	25	30	pF
		Outputs disabled	1		1	1	1	1		

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

TEST	S1
tpLH $^{\prime}$ tpHL tpLZ/tpZL tpHz $^{\text {tpZH }}$	$\begin{gathered} \text { Open } \\ 2 \times V_{\text {CC }} \\ \text { GND } \end{gathered}$

$\mathrm{V}_{\mathbf{C C}}$	C_{L}	R_{L}	V_{Δ}
0.8 V	15 pF	$2 \mathrm{k} \Omega$	0.1 V
$1.2 \mathrm{~V} \pm 0.1 \mathrm{~V}$	15 pF	$2 \mathrm{k} \Omega$	0.1 V
$1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$	15 pF	$2 \mathrm{k} \Omega$	0.1 V
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	30 pF	$1 \mathrm{k} \Omega$	0.15 V
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	30 pF	500Ω	0.15 V

voltage waveforms SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$, slew rate $\geq 1 \mathrm{~V} / \mathrm{ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $t_{P Z L}$ and $\mathrm{t}_{\mathrm{P}} \mathrm{ZH}$ are the same as t_{en}.
G. $\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$ are the same as t_{pd} -
H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

GKE (R-PBGA-N96)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. MicroStar $\mathrm{BGA}^{\mathrm{TM}}$ configuration
D. Falls within JEDEC MO-205 variation CC.
E. This package is tin-lead (SnPb). Refer to the 96 ZKE package (drawing 4204493) for lead-free.

MicroStar BGA is a trademark of Texas Instruments.

ZKE (R-PBGA-N96)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. MicroStar $\mathrm{BGA}^{\text {TM }}$ configuration
D. Falls within JEDEC MO-205 variation CC.
E. This package is lead-free. Refer to the 96 GKE package (drawing 4188953) for tin-lead (SnPb).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

[^0]: NOTE 3: All unused control inputs of the device must be held at V_{C} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

