SN74AVCB164245 **16-BIT DUAL-SUPPLY BUS TRANSCEIVER**

WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS

SCES394D-JUNE 2002-REVISED JUNE 2005

FEATURES

RUMENTS

www.ti.com

- Member of the Texas Instruments Widebus™ Family
- DOC[™] Circuitry Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
- **Dynamic Drive Capability Is Equivalent to** Standard Outputs With I_{OH} and I_{OI} of ±24 mA at 2.5-V V_{CC}
- Control Inputs VIH/VIL Levels Are Referenced to V_{CCB} Voltage
- If Either V_{CC} Input Is at GND, Both Ports Are in the High-Impedance State

- **Overvoltage-Tolerant Inputs/Outputs Allow** Mixed-Voltage-Mode Data Communications
- Ioff Supports Partial-Power-Down Mode Operation
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over Full 1.4-V to 3.6-V **Power-Supply Range**
- Latch-Up Performance Exceeds 100 mA Per JESD 78. Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION

This 16-bit (dual-octal) noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track V_{CCA}. V_{CCA} accepts any supply voltage from 1.4 V to 3.6 V. The B port is designed to track V_{CCB} . V_{CCB} accepts any supply voltage from 1.4 V to 3.6 V. This allows for universal low-voltage bidirectional translation between any of the 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.

The SN74AVCB164245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the outputs so the buses are effectively isolated.

The SN74AVCB164245 is designed so that the control pins (1DIR, 2DIR, 1 \overline{OE} , and 2 \overline{OE}) are supplied by V_{CCB}.

To ensure the high-impedance state during power up or power down, OE should be tied to V_{CCB} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. If either V_{CC} input is at GND, both ports are in the high-impedance state.

T _A	PACKA	GE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	FBGA – GRD	Tape and reel	74AVCB164245GRDR	WB4245
	FBGA – ZRD (Pb-Free)	Tape and reel	74AVCB164245ZRDR	VVD4240
	TSSOP – DGG Tape and reel		SN74AVCB164245GR	AVCB164245
-40°C 10 85°C	TVSOP – DGV	Tape and reel	SN74AVCB164245VR	WB4245
	VFBGA – GQL	Tape and reel	SN74AVCB164245KR	VVD4240
	VFBGA – ZQL (Pb-Free)	Tape and reel	74AVCB164245ZQLR	WB4245

ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus, DOC are trademarks of Texas Instruments.

TERMINAL ASSIGNMENTS

DGG OR DGV PACKAGE (TOP VIEW)

1DIR	1	U	48	
1B1	2		47	1A1
1B2	3		46	Б 1А2
GND	4		45	
1B3	5		44	1A3
1B4 🛛	6		43	1A4
V _{CCB} [7		42	V _{CCA}
1B5	8		41	1A5
1B6 🛛	9		40	1A6
GND 🛛	10		39	GND
1B7 🛛	11		38	1A7
1B8 🛛	12		37	1A8
2B1 🛛	13		36	2A1
2B2 🛛	14		35	2A2
GND 🛛	15		34	GND
2B3 🛛	16		33	2A3
2B4 🛛	17		32	2A4
V _{CCB} [18		31	V _{CCA}
2B5 🛛	19		30	2A5
2B6 🛛	20		29	2A6
GND 🛛	21		28	GND
2B7 🛛	22		27	2A7
2B8 🛛	23		26	2A8
2DIR [24		25	2 <u>0E</u>

TEXAS INSTRUMENTS www.ti.com

SCES394D-JUNE 2002-REVISED JUNE 2005

TERMINAL ASSIGNMENTS (56-Ball GQL/ZQL Package)⁽¹⁾

	1	2	3	4	5	6
Α	1DIR	NC	NC	NC NC NC		1 0E
В	1B2	1B1	GND	GND	1A1	1A2
С	1B4	1B3	V _{CCB}	V _{CCA}	1A3	1A4
D	1B6	1B5	GND	GND GND		1A6
Е	1B8	1B7			1A7	1A8
F	2B1	2B2			2A2	2A1
G	2B3	2B4	GND	GND	2A4	2A3
Н	2B5	2B6	V _{CCB}	V _{CCA}	2A6	2A5
J	2B7	2B8	GND	GND	2A8	2A7
к	2DIR	NC	NC	NC	NC	2 <mark>0E</mark>

(1) NC - No internal connection

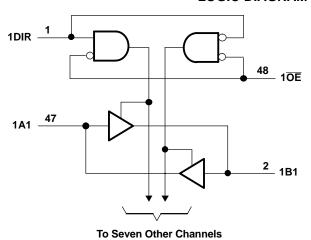
TERMINAL ASSIGNMENTS (54-Ball GRD/ZRD Package)⁽¹⁾

	1	2	3	4	5	6
Α	1B1	NC	1DIR	1 <mark>0E</mark>	NC	1A1
В	1B3	1B2	NC	NC	1A2	1A3
С	1B5	1B4	V _{CCB}	V _{CCA}	1A4	1A5
D	1B7	1B6	GND	GND	1A6	1A7
Е	2B1	1B8	GND	GND	1A8	2A1
F	2B3	2B2	GND	GND	2A2	2A3
G	2B5	2B4	V _{CCB}	V _{CCA}	2A4	2A5
н	2B7	2B6	NC	NC	2A6	2A7
J	2B8	NC	2DIR	2 <mark>0E</mark>	NC	2A8

(1) NC - No internal connection

FUNCTION TABLE (EACH 8-BIT SECTION)

INP	UTS					
OE	DIR	OPERATION				
L	L	B data to A bus				
L	Н	A data to B bus				
н	Х	Isolation				


		GF		r zr Top			GE	
	_	1	2	3	4	5	6	_
A	$\left(\right)$	-	-	\bigcirc	-	-	-	
в		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
С		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Е		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
F		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
J		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	\sim							_

GQL OR ZQL PACKAGE (TOP VIEW)

	1	2	3	4	5	6	
A	()	0	0	0	0	0	
в	0	()	()	0	\bigcirc	0	
с	()	()	()	()	()	()	
D	()	O	O	0	O	()	
Е	()	0			()	()	
F	0	()			О	0	
G	0	()	()	0	\bigcirc	()	
н	0	0	0	0	О	0	
J	0	()	()	0	()	0	
к	0	0	0	()	0	0	

SCES394D-JUNE 2002-REVISED JUNE 2005

LOGIC DIAGRAM (POSITIVE LOGIC)

2DIR 24 25 20E 2A1 36 13 2B1 To Seven Other Channels

Pin numbers shown are for the DGG and DGV packages.

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CCA} V _{CCB}	Supply voltage range		-0.5	4.6	V
		I/O ports (A port)	-0.5	4.6	
VI	Input voltage range ⁽²⁾	I/O ports (B port)	-0.5	4.6	V
		Control inputs	-0.5	4.6	
V	Voltage range applied to any output in the high-impedance or	A port	-0.5	4.6	V
Vo	power-off state ⁽²⁾	B port	-0.5	4.6	v
V	Valtage range employ to any extruct in the high or law state $\binom{2}{3}$	A port	-0.5	V _{CCA} + 0.5	V
Vo	Voltage range applied to any output in the high or low state ⁽²⁾⁽³⁾	B port		–0.5 V _{CCB} + 0.5	
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
Ι _{ΟΚ}	Output clamp current	V ₀ < 0		-50	mA
lo	Continuous output current			50	mA
	Continuous current through V _{CCA} , V _{CCB} , or GND			100	mA
		DGG package		70	
0		DGV package		58	0000
θ_{JA}	Package thermal impedance ⁽⁴⁾	GQL/ZQL package	28		°C/W
		GRD/ZRD package		36	
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

SCES394D-JUNE 2002-REVISED JUNE 2005

Recommended Operating Conditions⁽¹⁾⁽²⁾⁽³⁾

over operating free-air temperature range (unless otherwise noted)

			V _{CCI}	V _{cco}	MIN	MAX	UNIT
V _{CCA}	Supply voltage				1.4	3.6	V
V _{CCB}	Supply voltage				1.4	3.6	V
			1.4 V to 1.95 V		$V_{CCI} imes 0.65$		
VIH	High-level input voltage	Data inputs	1.95 V to 2.7 V		1.7		V
			2.7 V to 3.6 V		2		
						$V_{\text{CCI}} \times 0.35$	
V _{IL}	Low-level input voltage	Data inputs	1.95 V to 2.7 V			0.7	V
			2.7 V to 3.6 V			0.8	
			1.4 V to 1.95 V		$V_{CCB} imes 0.65$		
VIH	High-level input voltage	Control inputs (referenced to V _{CCB})	1.95 V to 2.7 V		1.7		V
		(Information of CCB)	2.7 V to 3.6 V		2		
		2				$V_{\text{CCB}} \times 0.35$	
V _{IL}	Low-level input voltage	Control inputs (referenced to V _{CCB})	1.95 V to 2.7 V			0.7	V
			2.7 V to 3.6 V			0.8	
VI	Input voltage				0	3.6	V
Vo	Output voltage	Active state			0	V _{cco}	V
۷Ō	Oulput voltage	3-state			0	3.6	v
				1.4 V to 1.6 V		-2	
	High-level output current			1.65 V to 1.95 V		-4	mA
I _{OH}				2.3 V to 2.7 V		-8	ШA
				3 V to 3.6 V		-12	
				1.4 V to 1.6 V		2	
I	l ow-level output current			1.65 V to 1.95 V		4	mA
I _{OL}	Low-level output current			2.3 V to 2.7 V		8	ШA
				3 V to 3.6 V		12	
$\Delta t / \Delta v$	Input transition rise or fall	rate				5	ns/V
T _A	Operating free-air temperation	ature			-40	85	°C

V_{CCI} is the V_{CC} associated with the data input port.
 V_{CCO} is the V_{CC} associated with the data output port.
 All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN74AVCB164245 **16-BIT DUAL-SUPPLY BUS TRANSCEIVER** WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS SCES394D-JUNE 2002-REVISED JUNE 2005

Electrical Characteristics⁽¹⁾⁽²⁾

over operating free-air temperature range (unless otherwise noted)

F	PARAMETER	TEST COND	DITIONS	V _{CCA}	V _{CCB}	MIN	TYP ⁽³⁾	MAX	UNIT
		I _{OH} = −100 μA	$V_{I} = V_{IH}$	1.4 V to 3.6 V	1.4 V to 3.6 V	V _{CCO} - 0.2			
		I _{OH} = -2 mA	$V_{I} = V_{IH}$	1.4 V	1.4 V	1.05			
V _{OH}		$I_{OH} = -4 \text{ mA}$	$V_{I} = V_{IH}$	1.65 V	1.65 V	1.2			V
		I _{OH} = -8 mA	$V_{I} = V_{IH}$	2.3 V	2.3 V	1.75			
		I _{OH} = -12 mA	$V_{I} = V_{IH}$	3 V	3 V	2.3			
		I _{OH} = 100 μA	$V_{I} = V_{IL}$	1.4 V to 3.6 V	1.4 V to 3.6 V			0.2	
		I _{OH} = 2 mA	$V_{I} = V_{IL}$	1.4 V	1.4 V			0.35	
V _{OL}		I _{OH} = 4 mA	$V_{I} = V_{IL}$	1.65 V	1.65 V			0.45	V
		I _{OH} = 8 mA		2.3 V	2.3 V			0.55	
	A port Control inputs	I _{OH} = 12 mA	$V_{I} = V_{IL}$	3 V	3 V			0.7	
I _I	Control inputs	$V_I = V_{CCB}$ or GND		1.4 V to 3.6 V	3.6 V			±2.5	μA
1	A port			0 V	0 to 3.6 V		±10		μA
l _{off}	B port	- V _I or V _O = 0 to 3.6 V		0 to 3.6 V	0 V		±10		
	A or B ports		$\overline{OE} = V_{IH}$	3.6 V	3.6 V			±12.5	
$I_{OZ}^{(4)}$	B port	$V_0 = V_{CC0}$ or GND, $V_1 = V_{CC1}$ or GND	$\overline{OE} = don't$	0 V	3.6 V			±12.5	μA
	A port		care	3.6 V	0 V	±12.5			
			I	1.6 V	1.6 V		20		
				1.95 V	1.95 V			20	
		$V_{I} = V_{CCI}$ or GND,		2.7 V	2.7 V			30	
I _{CCA}		$v_{\rm I} = v_{\rm CCI}$ or GND,	$I_{O} = 0$	0 V	3.6 V			-40	μA
				3.6 V	0 V			40	
				3.6 V	3.6 V			40	
				1.6 V	1.6 V			20	
				1.95 V	1.95 V			20	
		$V_{I} = V_{CCI}$ or GND,	L = 0	2.7 V	2.7 V			30	
'CCB	Іссв	$v_{I} = v_{CCI} \text{ or GND},$	$I_{O} = 0$	0 V	3.6 V			40	μA
				3.6 V	0 V			-40	
				3.6 V	3.6 V				
Ci	Control inputs	$V_I = 3.3 \text{ V or GND}$		3.3 V	3.3 V		4		pF
Cio	A or B ports	$V_0 = 3.3 \text{ V or GND}$		3.3 V	3.3 V		5		pF

V_{CCO} is the V_{CC} associated with the output port.
 V_{CCI} is the V_{CC} associated with the input port.
 All typical values are at T_A = 25°C.
 For I/O ports, the parameter I_{OZ} includes the input leakage current.

SCES394D-JUNE 2002-REVISED JUNE 2005

Switching Characteristics

over recommended operating free-air temperature range, V_{CCA} = 1.5 V \pm 0.1 V (see Figure 2)

PARAMETER	FROM	TO		V _{CCB} = 1.5 V 0.1 V		V _{CCB} = 1.8 V 0.15 V		V _{CCB} = 2.5 V 0.2 V		V _{CCB} = 3.3 V 0.3 V	
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	А	В	1.7	6.7	1.9	6.3	1.8	5.5	1.7	5.8	
t _{pd}	В	А	1.8	6.8	2.2	7.4	2.1	7.6	2.1	7.3	ns
		А	2.5	8.4	2.4	7.4	2.1	5.2	1.9	4.2	20
t _{en} OE	ÛE	В	2.1	9	2.9	9.8	3.2	10	3	9.8	ns
	t _{dis} DE	А	2.2	6.9	2.3	6.1	1.3	3.6	1.3	3	
t _{dis}	ÛE	В	2.1	7.1	2.3	6.4	1.7	5.1	1.6	4.8	ns

Switching Characteristics

over recommended operating free-air temperature range, V_{CCA} = 1.8 V \pm 0.15 V (see Figure 2)

PARAMETER	FROM	TO (OUTPUT)		V _{CCB} = 1.5 V 0.1 V		V _{CCB} = 1.8 V 0.15 V		2.5 V 2 V	V _{CCB} = 3.3 V 0.3 V		UNIT
	(INPUT)	(001701)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	А	В	1.7	6.7	1.8	6	1.7	4.7	1.6	4.3	
t _{pd}	В	А	1.4	5.5	1.8	6	1.8	5.8	1.8	5.5	ns
	ŌĒ	А	2.6	8.5	2.5	7.5	2.2	5.3	1.9	4.2	
len	UE	В	1.8	7.6	2.6	7.7	2.6	7.6	2.6	7.4	ns
+	ŌĒ	А	2.3	7	2.3	6.1	1.3	3.6	1.3	3	20
t _{dis}	UE	В	1.8	7	2.5	6.3	1.8	4.7	1.7	4.4	ns

Switching Characteristics

over recommended operating free-air temperature range, V_{CCA} = 2.5 V \pm 0.2 V (see Figure 2)

PARAMETER	FROM	TO (OUTPUT)	V _{CCB} = 1.5 V 0.1 V		V _{CCB} = 1.8 V 0.15 V		V _{CCB} = 2.5 V 0.2 V		V _{CCB} = 3.3 V 0.3 V		UNIT	
	(INPUT)		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
+	А	В	1.6	6	1.8	5.6	1.5	4	4 1.4		20	
t _{pd}	В	А	1.3	4.6	1.7	4.4	1.5	4	1.4	3.7	ns	
t _{en} O	ŌĒ	А	3.1	8.5	2.5	7.5	2.2	5.3	1.9	4.2	~~~	
	ÛE	В	1.7	5.7	2.2	5.5	2.2	5.3	2.2	5.1	ns	
t _{dis}		А	2.4	7	3	6.1	1.4	3.6	1.2	3		
	ŌĒ	В	1.2	5.8	1.9	5	1.4	3.6	1.3	3.3	ns	

Switching Characteristics

over recommended operating free-air temperature range, V_{CCA} = 3.3 V \pm 0.3 V (see Figure 2)

PARAMETER	FROM	TO (OUTPUT)	V _{CCB} = 1.5 V 0.1 V		V _{CCB} = 1.8 V 0.15 V		V _{CCB} = 2.5 V 0.2 V		V _{CCB} = 3.3 V 0.3 V		UNIT					
	(INPUT)	(001-01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX						
	А	В	1.5	5.9	1.7	5.4	1.5	3.7	1.4	3.1	20					
t _{pd}	В	А	1.3	4.5	1.6	3.8	1.5	3.3	1.4	3.1	ns					
	ŌĒ	А	2.6	8.3	2.5	7.4	2.2	5.2	1.9	4.1						
t _{en}	ÛE	UE	ÛE	UE	ÛE	UE	В	1.6	4.9	2	4.5	2	4.3	1.9	4.1	ns
t _{dis}	ŌE	А	2.3	7	3	6	1.3	3.5	1.2	3.5						
		В	1.3	6.9	2.1	5.5	1.6	3.8	1.5	3.5	.5 ns					

SCES394D-JUNE 2002-REVISED JUNE 2005

Operating Characteristics

 V_{CCA} and V_{CCB} = 3.3 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS	TYP	UNIT	
	Power dissipation capacitance per transceiver,	Outputs enabled		14	
C _{pdA} (V _{CCA}) A-port	A-port input, B-port output	Outputs disabled		7	pF
	Power dissipation capacitance per transceiver,	Outputs enabled	$C_L = 0, f = 10 \text{ MHz}$	20	
	B-port input, A-port output	Outputs disabled		7	
С _{рdB} (V _{CCB})	Power dissipation capacitance per transceiver,	Outputs enabled		20	
	A-port input, B-port output	Outputs disabled		7	
	Power dissipation capacitance per transceiver,	Outputs enabled	$C_{L} = 0, f = 10 \text{ MHz}$	14	pF
	B-port input, A-port output	Outputs disabled		7	

Output Description

The DOCTM circuitry is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OL} vs I_{OL} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, AVC Logic Family Technology and Applications, literature number SCEA006, and Dynamic Output Control (DOCTM) Circuitry Technology and Applications, literature number SCEA009.

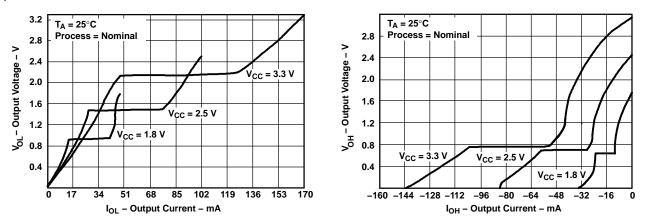
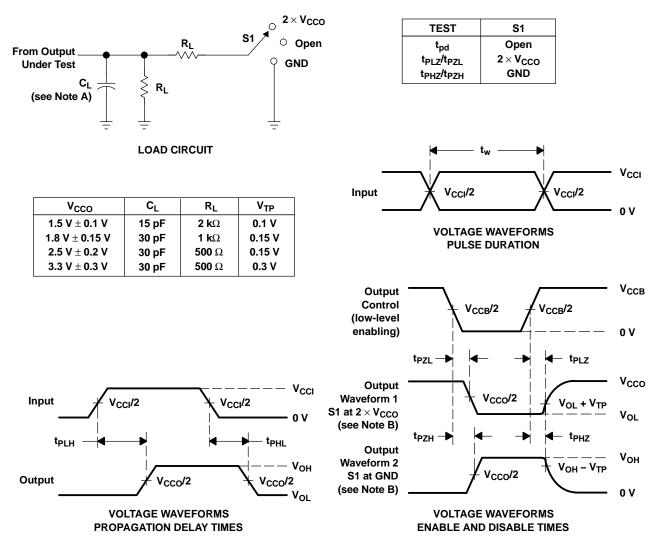



Figure 1. Typical Output Voltage vs Output Current

SCES394D-JUNE 2002-REVISED JUNE 2005

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, dv/dt ≥ 1 V/ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .
 - H. V_{CCI} is the V_{CC} associated with the input port.
 - I. V_{CCO} is the V_{CC} associated with the output port.

Figure 2. Load Circuit and Voltage Waveforms

24-Apr-2015

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
74AVCB164245GRDR	OBSOLETE	BGA MICROSTAR JUNIOR	GRD	54		TBD	Call TI	Call TI	-40 to 85		
74AVCB164245GRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AVCB164245	Samples
74AVCB164245GRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AVCB164245	Samples
74AVCB164245VRE4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	WB4245	Samples
74AVCB164245ZQLR	ACTIVE	BGA MICROSTAR JUNIOR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	WB4245	Samples
74AVCB164245ZRDR	ACTIVE	BGA MICROSTAR JUNIOR	ZRD	54	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	WB4245	Samples
SN74AVCB164245GR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AVCB164245	Samples
SN74AVCB164245KR	OBSOLETE	BGA MICROSTAR JUNIOR	GQL	56		TBD	Call TI	Call TI	-40 to 85	WB4245	
SN74AVCB164245VR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	WB4245	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

PACKAGE OPTION ADDENDUM

24-Apr-2015

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

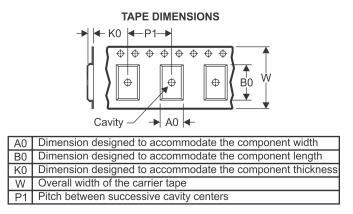
OTHER QUALIFIED VERSIONS OF SN74AVCB164245 :

Automotive: SN74AVCB164245-Q1

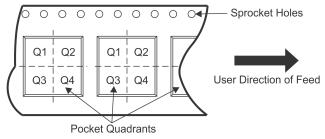
• Enhanced Product: SN74AVCB164245-EP

NOTE: Qualified Version Definitions:

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

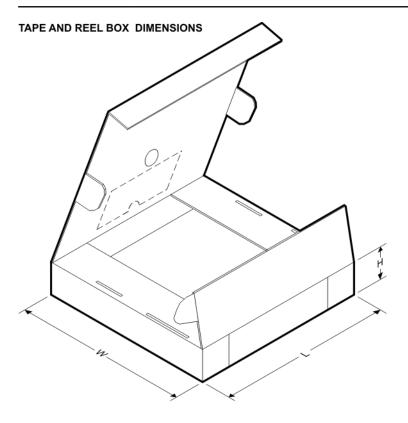

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74AVCB164245ZQLR	BGA MI CROSTA R JUNI OR	ZQL	56	1000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1
74AVCB164245ZRDR	BGA MI CROSTA R JUNI OR	ZRD	54	1000	330.0	16.4	5.8	8.3	1.55	8.0	16.0	Q1
SN74AVCB164245GR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74AVCB164245VR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1

TEXAS INSTRUMENTS

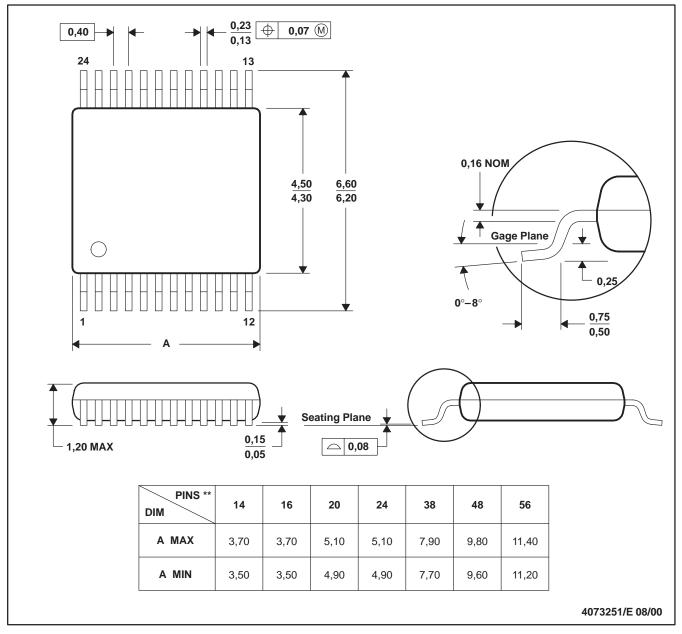
www.ti.com

PACKAGE MATERIALS INFORMATION

11-Mar-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74AVCB164245ZQLR	BGA MICROSTAR JUNIOR	ZQL	56	1000	336.6	336.6	28.6
74AVCB164245ZRDR	BGA MICROSTAR JUNIOR	ZRD	54	1000	336.6	336.6	28.6
SN74AVCB164245GR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74AVCB164245VR	TVSOP	DGV	48	2000	367.0	367.0	38.0


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

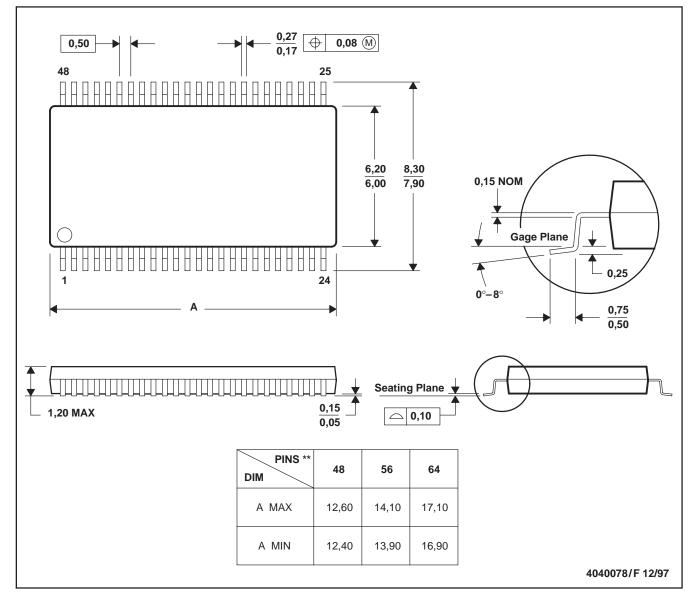
24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

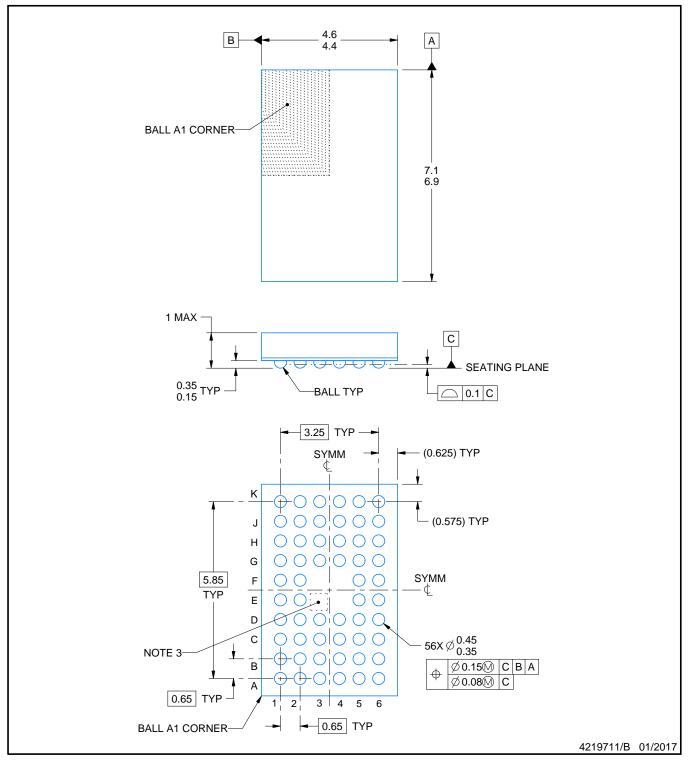
DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153


ZQL0056A

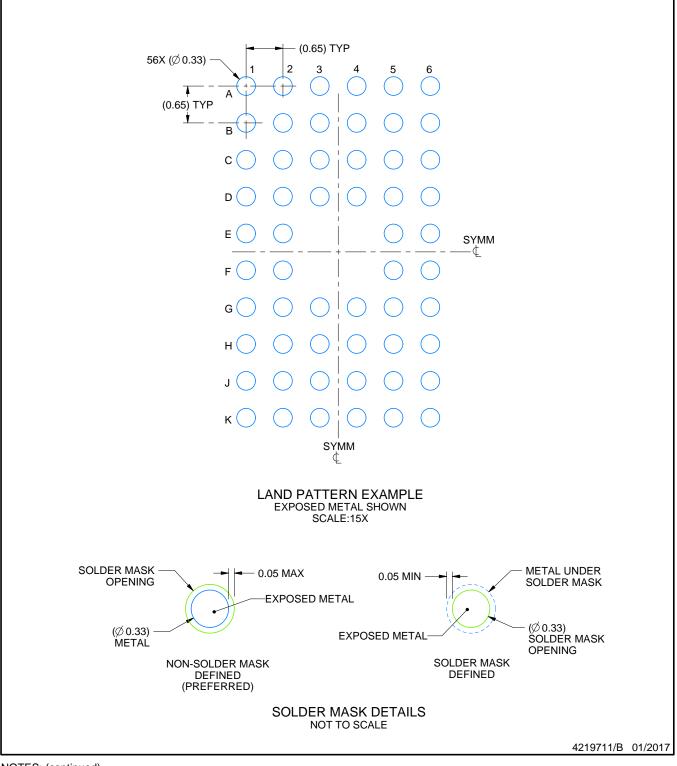
PACKAGE OUTLINE

JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. No metal in this area, indicates orientation.



ZQL0056A

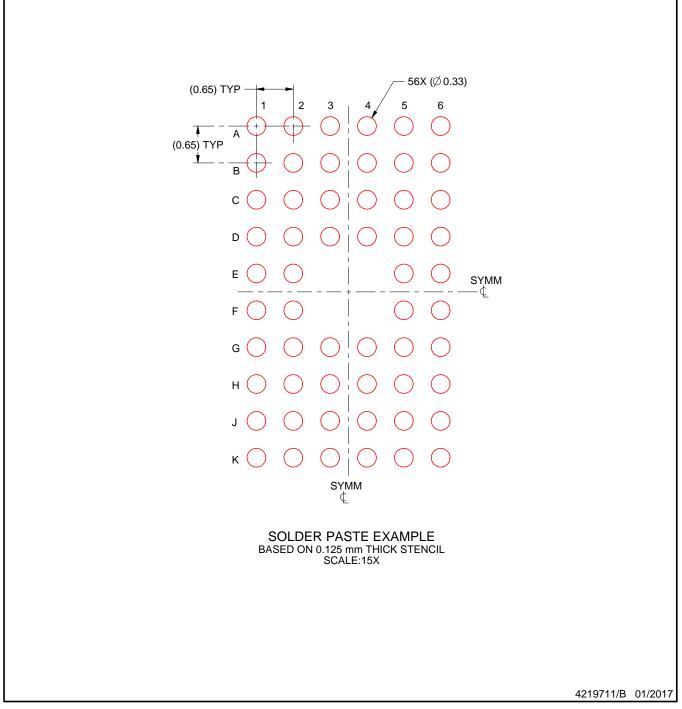
EXAMPLE BOARD LAYOUT

JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).

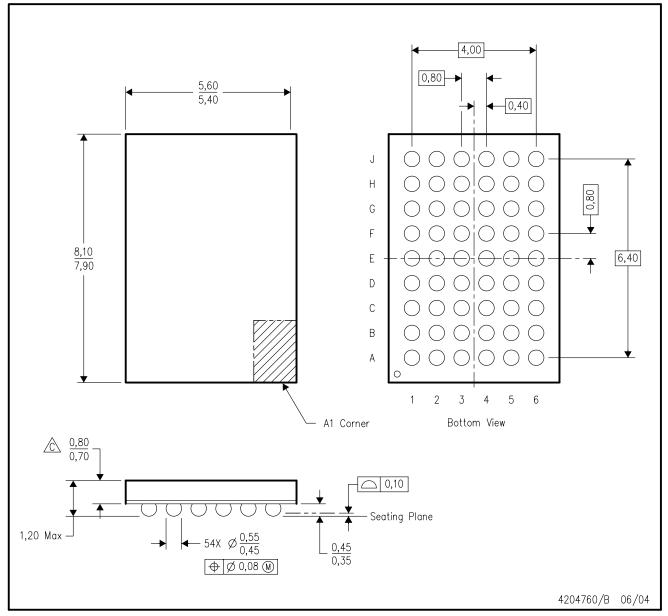


ZQL0056A

EXAMPLE STENCIL DESIGN

JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY


NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

ZRD (R-PBGA-N54)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

Falls within JEDEC MO-205 variation DD.

D. This package is lead-free. Refer to the 54 GRD package (drawing 4204759) for tin-lead (SnPb).

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated