

FURUNO GNSS Receiver

Model GT-86

Hardware Specifications

(Document No. SE16-410-015-00)

www.furuno.com

IMPORTANT NOTICE

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of the publisher, FURUNO ELECTRIC CO., LTD.

FURUNO ELECTRIC CO., LTD. All rights reserved.

Any information of this documentation shall not be disclosed to any third party without permission of the publisher, FURUNO ELECTRIC CO., LTD.

FURUNO ELECTRIC CO., LTD. reserves the right to make changes to its products and specifications without notice.

All brand and product names are registered trademarks, trademarks or service marks of their respective holders.

The following satellite systems are operated and controlled by the authorities of each government.

- GPS(USA)
- Galileo(Europe)
- QZSS(Japan)
- SBAS(USA: WAAS, Europe: EGNOS, Japan: MSAS)

Thus FURUNO is not liable for the degradation of the above systems so therefore FURUNO cannot guarantee specification based on their conditions. User is expected to be familiar with the System and make full use of it with their own responsibility.

Revision History

Version	Changed contents	Date
	Changed document number from G13-000-10-017-2	
	Table 2.1—Corrected the operational limit of altitude.	
	Table 3.1—Corrected the condition.	
	Table 5.1—Corrected the description for VBK.	
	Table 6.2—Added Notes for rising slew rate of VCC and VBK. Updated the VCC	
	current consumption	
	Updated Figure 6.1	
	Table 6.3—Added Notes for equivalent pull-up/pull-down resistor	
	Added Section 6.3.2	
	Table 6.3, Table 6.4—Remove the condition "TA=25°C, unless otherwise stated"	
0	Updated Figure 6.3 and Table 6.5	2016.12.13
	Table 6.6, Table 6.7—Corrected the symbols	
	Table 6.8—Added signs for deviation error	
	Table 6.9—Changed Amplifier gain 1 spec and Amplifier NF spec.	
	Table 8.1—Added RESERVED pins. Corrected the equivalent circuit for	
	VCC_RF.	
	Section 9.1—Added the height Y	
	Figure 10.1—Corrected the recommended land pattern	
	Section 10.2.1—Corrected the example of connection with active antenna	
	Chapter 11—Added descriptions for marking specification	
	Table 13.1—Corrected the specified classification temperature	

Table of Contents

1				
2	G	NSS G	Seneral Specifications ······	1
3	G	NSS G	Seneral Performance ······	2
4	Fı	unctio	nal Overview ······	3
5	1/0	O Sian	nal Description·····	4
6			al Characteristics ······	
_	6.1	Abs	solute Maximum Rating	5
	6.2	Pov	ver Supply	6
	6.3	Inte	rface ······	7
	6.	3.1	Interface Signal	
	6.	3.2	Precaution on Using the Input Pin with Pull-up Resistor	7
	6.4	Res	setset	7
	6.	4.1	Internal Power-on Reset	
		4.2	External Reset ·····	
	6.5	UAF	RT Wake-up Timing after Reset ······	
	•	5.1	Without External Reset	
	_	5.2	With External Reset	
	6.	5.3	Baud Rate Setting 1	
	6.6	Rec	commended GNSS Antenna1	
	•	6.1	Active Antenna 1	
		6.2	Passive Antenna ······ 1	
7	Er	nviron	mental Specifications 1	0
8			ent Circuit ······ 1	
9		lechan	ical Specifications····································	3
	9.1		kage Dimension1	
	9.2		ctrode1	
	9.3		ght1	
	9.4		Position List1	
1(0	Refer	ence Design······· 1	4
	10.1	l Rec	commended Land Pattern·······1	4
			mple of Connection ·······1	
			With Active Antenna ······ 1	
			With Passive Antenna 1	
1			ng1	
12			ling Precaution1	
1;			r Profile 1	
			low Profile1	
			caution about Partial Heating with the Way except Reflow·······	
14		Speci	al Instruction····································	0
	14.1	l Elec	ctronic Component······2	20
			Damage	
_			1S2	
1	5	Refer	ence Documents ······ 2	0

1 Outline

GT-86 is a stand-alone, complete GNSS timing receiver module. It is designed to provide accurate timing pulse (PPS) to customers' various applications that are required to be synchronized to UTC time. Main features are as follows:

- Supports GPS, SBAS, QZSS and Galileo¹⁾ with the latest eRideOPUS 6 monolithic GNSS receiver chip.
- Provides highly accurate PPS signal for various synchronization application with outputting PVT (Position, Velocity and Time) information through serial communication channel.
- Supports firmware update through serial communication channel.
- Fully integrated GNSS firmware executes acquisition, tracking, navigation and data output for multiple constellations.
- Active Anti-jamming technology removes up to 8 CW jammers efficiently.
- Multi path mitigation technology maintains high accuracy even in an urban canyon.
- Works in both Autonomous mode and Assisted mode.
- GNSS high sensitivity enables to use at deep indoor environment.
- Both active and passive antenna usable.
- Low profile, small SMT package reducing foot print on PCB and assembly cost.

Notes:

1) For Galileo reception, firmware update is required.

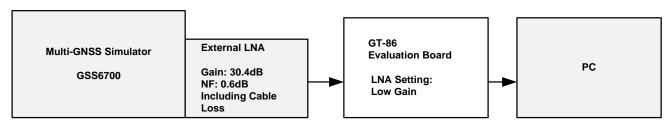
2 GNSS General Specifications

Table 2.1 General Specifications

Items	Description	Notes	
	GPS L1C/A	12	
GNSS reception	Galileo	8	1)
capability	QZSS L1C/A	2	
, ,	SBAS L1C/A	2	PRN number is 120 to 138 of WAAS, MSAS, EGNOS, GAGAN
GNSS concurrent reception	GPS, Galileo, QZSS, SBAS	24	1)
Environment robustness	Active Anti-jamming	8CW	
performance	Multipath Mitigation	•	
Serial data format	NMEA (default)	•	Ver. 4.10, 38400 bps ²⁾
Antenna	Active antenna	•	
Antenna	Passive antenna	•	
Operational limits	Altitude	18,300m	Compliant with the Wassenaar
Operational limits	Velocity	515 m/s	Arrangement Specifications

Notes:

2) See Protocol Specifications for details.


Δ0

3 GNSS General Performance

Table 3.1 General Performance

 $T_A=25$ °C

Items	Descripti	on	Notes			
	Hot Outdoor	<5 s	These are specified with the measurement			
TTFF	Warm Outdoor	35 s	platform shown in Figure 3.1. Simulator			
	Cold Outdoor	35 s	output level is set to -130 dBm.			
	Tracking	-161 dBm				
CDS consitivity	Hot Acquisition	-161 dBm	These are specified with the measurement			
GPS sensitivity	Cold Acquisition	-147 dBm	platform shown in Figure 3.1.			
	Reacquisition	-161 dBm	_			
			GPS only			
		2.5m CEP	Open sky 24 hours with recommended			
Position accuracy	Horizontal Outdoor		antenna			
1 Osition accuracy	Tionzoniai Odidooi		GPS and SBAS			
		2.0m CEP	Open sky 24 hours with recommended			
			antenna			
PPS accuracy 1σ 15 ns		Open sky, static with recommended antenna				

Figure 3.1 Measurement Platform

4 Functional Overview

GT-86 is a stand-alone, complete GNSS timing receiver module that can provide accurate PPS signal with GNSS PVT (Position, Velocity & Time) information through serial communication channel. The key device inside is *eRide*OPUS 6, the latest monolithic GNSS receiver chip that contains ARM9TM processor for signal tracking and processing, high performance integrated LNA, PLL Synthesizer, Down-converter, ADC and DSP. GT-86 also contains Flash ROM for firmware and data storage, TCXO for reference clock, 32 kHz crystal for RTC (Real time clock), L1 band SAW filter and power-on reset circuit. The block diagram is shown in Figure 4.1.

PPS pin provides accurate timing pulse which is synchronized to UTC (GPS) time system. The frequency of PPS signal is configurable by commands through serial communication channel (RXD1). Also GCLK pin provides clock output synchronized to PPS. The frequency of GCLK is configured by serial command from 4 kHz up to 40 kHz with 1 Hz step, and the rising edge of PPS pulse is synchronized to GCLK rising.

GT-86 has a power-on reset function inside. It detects VCC input voltage, and sets internal power-on reset signal (POR_N) to logic L when the voltage is lower than power-on reset threshold voltage shown in Table 6.4. GT-86 also has an external reset signal input, RST_N, which allows to force GT-86 reset by external control. RST_N and POR_N are Wired-OR to create internal reset signal for initializing whole module.

FLNA pin has a special function to configure LNA gain. In case this pin is connected to VCC, internal LNA is set to low gain mode. And in case of no connection (open), high gain mode is selected. So for active antenna, this pin should be connected to VCC, and for passive antenna open.

ANT_DET0/ANT_DET1 pins are used to feed the status of active antenna connection to ARMTM subsystem from the antenna current detection circuit placed outside of GT-86. These signals can show three (3) states of antenna connection; normal, open (low current) and short (high current). For details, please refer "FURUNO GPS/GNSS Receiver 86/87 series User's Design Guide (SE13-900-001)".

Reserved pins have pull-up or pull-down resistors inside adequately, so please do not connect anything.

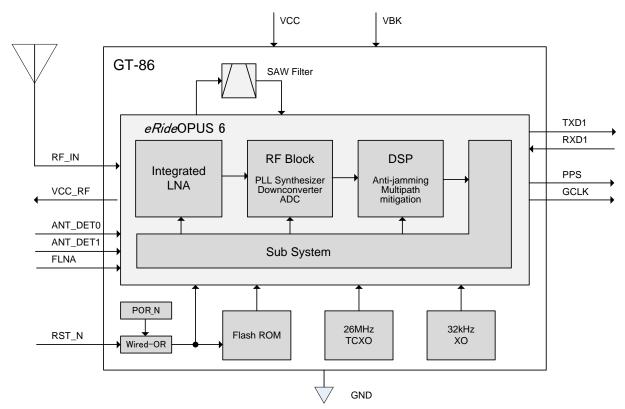


Figure 4.1 Block Diagram

5 I/O Signal Description

Table 5.1 I/O Signal Description

#	Pin Name	Туре	PU/PD ³⁾	Description
1	RESERVED	-	-	Do not connect anything
				LNA gain select pin
2	FLNA	Digital Input	Pull-down	Logic L (leave open) : High Gain
				Logic H (connect to VCC) : Low Gain
3	PPS	Digital Output	Pull-down	PPS output pin
	113	Digital Output	i dii-dowii	Do not pull-up externally ⁴⁾
4	RESERVED	-	-	Do not connect anything
_ 5	ANT_DET1	Digital Input	Pull-up	- Antenna detection input pins ⁵⁾
6	ANT_DET0	Digital Input	Pull-up	Antenna detection input pins
_ 7	RESERVED	-	-	Do not connect anything
		Digital		External reset signal input pin
8	RST_N	Digital Input/Output	Pull-up	Logic L : Reset
		input/Output		Logic H (Open) ⁶⁾ : Normal operation
9	VCC_RF	Power Output	-	Power supply output pin for active antenna
10	GND	-	-	Ground
11	RF_IN	Analog Input	-	GNSS signal input pin
12	GND	-	-	Ground
13	GND	-	-	Ground
14	RESERVED	-	-	Do not connect anything
15	GCLK	Digital Output	Pull-down	Clock output pin
				Do not pull-up externally ⁴⁾
16	RESERVED	-	-	Do not connect anything
17	RESERVED	-	-	Do not connect anything
18	RESERVED	-		Do not connect anything
19	RESERVED	-		Do not connect anything
20	TXD1	Digital Output		UART1 transmission output pin
_21	RXD1	Digital Input	Pull-up	UART1 reception input pin
22	VBK	Power Input	-	Backup power supply input pin Leave open if battery backup function is not used
23	VCC	Power Input	-	Main power supply input pin
24	GND	-	-	Ground

Notes:

- 3) Pull-up and pull-down resistor values are shown in Table 6.3.
- 4) These pins have pull-down resistors inside to ensure power-on configuration, so it is prohibited to connect any pull-up resistor at the outside of the module.
- 5) For details, see FURUNO GPS/GNSS Receiver 86/87 series User's Design Guide (SE13-900-001).
- 6) RST_N is Wired-OR with internal power-on reset (POR_N) signal, so please drive with open-drain or open-collector device.

6 Electrical Characteristics

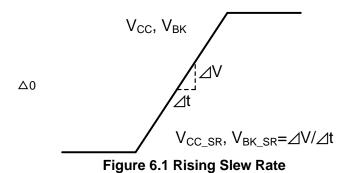
6.1 Absolute Maximum Rating

The lists of absolute maximum ratings are specified over operating case temperature shown in Table 7.1. Stresses beyond those listed under those range may cause permanent damage to module.

Table 6.1 Absolute Maximum Rating

Items	Symbol	Min.	Max.	Unit	Notes
Supply voltage	V_{CC_ABS}	-0.3	4.0	V	
Backup supply voltage	V_{BK_ABS}	-0.3	4.0	V	
Digital input (DI) voltage	-	-0.3	4.0	V	
Digital output (DO) current	-	-	±7	mΑ	
VCC_RF output current	I _{CC_RF_ABS}		150	mΑ	
DE IN Secret a second			-20	dBm	at 1575.42MHz
RF_IN input power (High Gain mode)	P _{RFINH_ABS}		1	dBm	at 900MHz
(Flight Gailt Hode)			1	dBm	at 1800MHz
DE IN Secret access			-5	dBm	at 1575.42MHz
RF_IN input power (Low Gain mode)	P_{RFINL_ABS}		0	dBm	at 900MHz
(Low Gaill Hode)			-1	dBm	at 1800MHz

6.2 Power Supply


Table 6.2 Power Supply Characteristics

T_A=25°C, unless otherwise stated

Items	Symbol	Min.	Тур.	Max.	Unit	Notes
Supply voltage to VCC	V _{CC}	3	3.3	3.6	V	
Backup supply to VBK	V_{BK}	1.4	-	3.6	V	
Rising slew rate of VCC	V_{CC_SR}	-	-	3.6x10 ⁴⁷⁾	V/s	See Figure 6.1
Rising slew rate of VBK	V_{BK_SR}	3.6	-	3.6x10 ⁴⁷⁾	V/s	See Figure 6.1
Output voltage from VCC_RF	V_{CC_RF}	V _{CC} -0.2	-	V _{CC}	V	I _{CC RF} =100mA
	I _{CCAL}	-	58.5	106.5	mΑ	Full search, VCC=3.3V
VCC current consumption Low Gain mode (FLNA: High)	I _{CCTL}	-	51.5	-	mA	Tracking satellite outdoor @-130dBm signal level VCC=3.3V
	I_{CCAH}	-	65	113	mΑ	Full search, VCC=3.3V
VCC current consumption High Gain mode (FLNA: Open)	I _{CCTH}	-	58	-	mA	Tracking satellite outdoor @-130dBm signal level VCC=3.3V
VBK current consumption at back up	I _{BKN}	-	9	20	μA	V _{CC} =0V
VBK current consumption at normal operation	I _{BKB}	-	0.4	2	μA	V _{CC} =3.3V

Notes:

△0 7) When the rising slew rate of VCC and VBK is more than 3.6x10⁴ V/s, the internal ESD protection circuit turns on during the voltage rising and the inrush current of the power supply may be increased. However, it does not cause damage to the module.

6.3 Interface

6.3.1 Interface Signal

Table	6.3	Interface	Signal

Δ0

Items	Symbol	Min.	Тур.	Max.	Unit	Notes
Logic L input voltage	V _{IL}	-	-	8.0	V	
Logic H input voltage	V _{IH}	2.0	-	-	V	
Hysteresis voltage	V_{hst}	0.31	-	-	V	
Logic L output voltage	V _{OL}	-	-	0.4	V	@ I _{OL} = 2mA
Logic H output voltage	V _{OH}	2.4	-	-	V	@ I _{OH} = 2mA
Equivalent pull-up resistor	R _{PU}	29	41	62	kΩ	@V _I = 3.3V △0
Equivalent pull-down resistor	R _{PD}	30	44	72	kΩ	@V₁ = 0V △0

△0 6.3.2 Precaution on Using the Input Pin with Pull-up Resistor

If the input pin with a pull-up resistor (5.ANT_DET1, 6.ANT_DET0, 8.RST_N, 18.RXD2, 21.RXD1) is connected to a signal source through an in-series resistor R_{in} (that includes the output impedance of the signal source), R_{in} must be less than or equal to 180Ω .

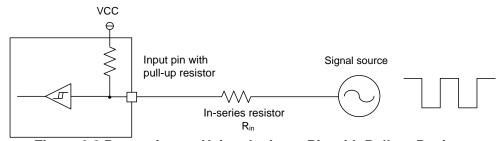


Figure 6.2 Precaution on Using the Input Pin with Pull-up Resistor

6.4 Reset

6.4.1 Internal Power-on Reset

GT-86 contains an internal power-on reset circuit which detects VCC voltage and creates POR_N (power-on reset) signal for initializing module. Table 6.4 shows the threshold voltages to detect and create POR_N signal.

Table 6.4 Power-on Reset Voltage

Δ

Items	Symbol	Min.	Тур.	Max.	Unit	Notes
Power On Reset threshold voltage (rising)	V_{RTH_POR}	-	-	3.0	V	
Power On Reset threshold voltage (falling)	V_{FTH_POR}	2.7	-	-	V	

6.4.2 External Reset

In most cases, it is not required to drive external reset input (RST_N) pin. However, if it is needed to force being in reset state externally for e.g. synchronizing reset state with application circuitry, RST_N can be used for this purpose. RST_N should be driven by open-drain or open-collector device for avoiding any collision with internal power-on reset driver.

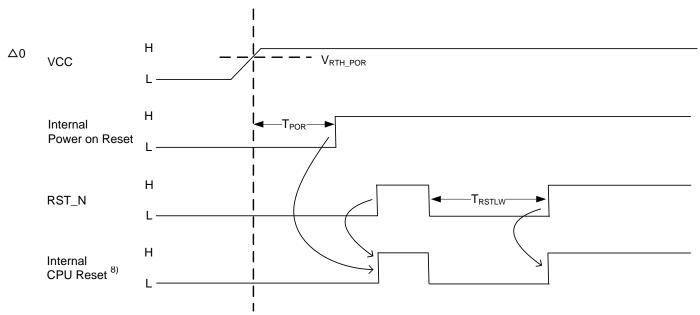


Figure 6.3 Reset Sequence

Table 6.5 Reset Sequence

Δ0	Items	Symbol	Min.	Max.	Unit	Notes
	Internal power on reset released time after VCC reaches $V_{\text{RTH_POR}}$	T _{POR}	150	250	ms	
	Reset pulse width	T_{RSTLW}	300	-	ms	

Notes:

8) CPU reset is released when both the internal power on reset and the external reset (RST_N) are released.

6.5 UART Wake-up Timing after Reset

6.5.1 Without External Reset

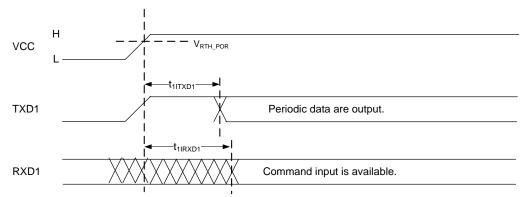


Figure 6.4 UART Wake-up Timing after V_{RTH_POR}

Table 6.6 UART Wake-up Timing after V_{RTH_POR}

Δ0	Items	Symbol	Min.	Тур.	Max.	Unit	Notes
	Time delay until periodic data output after VCC reaches V _{RTH_POR}	t _{1ITXD1}	-	3.3	6	S	
	Time delay until the command input is available after VCC reaches V _{RTH_POR}	t _{1IRXD1}	-	3.3	6	S	

6.5.2 With External Reset

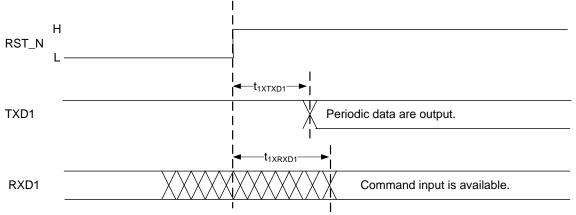


Figure 6.5 UART Wake-up Timing after RST_N

Table 6.7 UART Wake-up Timing after RST_N

	Table 0.7 OAKT Wake-up Tilling after K51_N						
Δ0	Items	Symbol	Min.	Тур.	Max.	Unit	Notes
	Time delay until periodic data are output after RST_N set to H	t _{1XTXD1}	-	3.1	6	S	
	Time delay until the command input is available after RST_N set to H	t _{1XRXD1}	-	3.1	6	s	

6.5.3 Baud Rate Setting

The UART inside GT-86 can handle various baud rate serial data shown in Table 6.8. The baud rate clock is created from 71.5 MHz system clock, hence it has some deviation errors against ideal baud rate clock as shown in Table 6.8.

Table 6.8 Baud Rate vs. Deviation Error

Baud rate [bps]	Deviation error [%]	Δ0			
4800	+0.00	-			
9600	+0.11				
19200	-0.11				
38400	+0.32				
57600	-0.54				
115200	-0.54				
230400	+2.08				
		-			

6.6 Recommended GNSS Antenna

6.6.1 Active Antenna

Table 6.9 Recommended Active Antenna

Items	Min.	Тур.	Max.	Unit	Notes
GPS center frequency	-	1575.42	-	MHz	2.046 MHz bandwidth
Antenna element gain	0	-	-	dBi	
Amplifier gain1	10	-	35 ⁹⁾	dB	Including cable loss High Gain mode (FLNA: Open)
Amplifier gain2	15	-	50 ⁹⁾	dB	Including cable loss Low Gain mode (FLNA: High)
Amplifier NF	-	1.5	3	dB	Including cable loss
Impedance	-	50	-	Ω	
VSWR	-	-	2	-	

Notes:

Δ0

Δ0

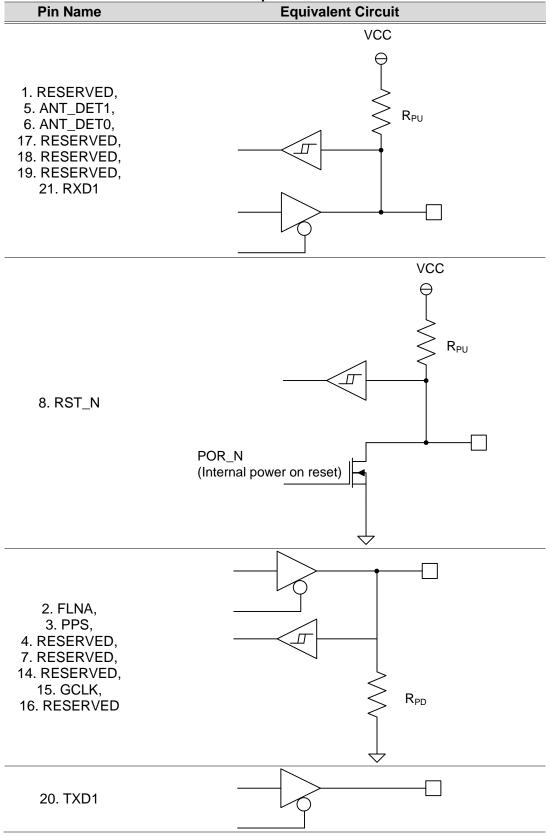
9) For best jammer resistance (and lower power consumption), use 10 dB lower gain than the max gain.

6.6.2 Passive Antenna

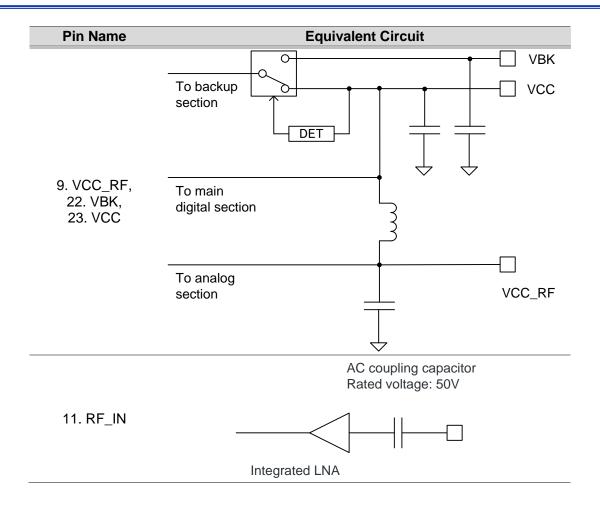
Table 6.10 Recommended Passive Antenna

Items	Min.	Тур.	Max.	Unit	Notes
GPS center frequency	-	1575.42	-	MHz	2.046 MHz bandwidth
Antenna element gain	0	-	-	dBi	High Gain mode (FLNA: Open)
Impedance	-	50	-	Ω	
VSWR	-	-	2	-	

7 Environmental Specifications


Table 7.1 Environmental Specifications

i anio i i i ziivii oi ii a o poomioationo						
Items	Specification	Unit	Notes			
Operating temperature	-40 to +85	°C				
Storage temperature	-40 to +85	°C				
Operation humidity	85 (MAX)	%R.H	T _A = 60°C, No condensation			



8 Equivalent Circuit

Table 8.1 Equivalent Circuit $\triangle 0$

9 Mechanical Specifications

9.1 Package Dimension

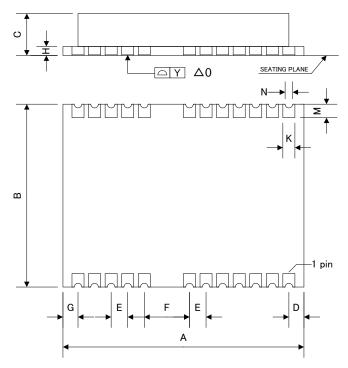


Figure 9.1 Package Dimension

Table 9.1 Package Dimension

	Min. [mm]	Typ. [mm]	Max. [mm]
Α	15.8	16.0	16.2
В	12.0	12.2	12.4
С	2.6	2.8	3.0
D	0.9	1.0	1.1
Е	1.0	1.1	1.2
F	2.9	3.0	3.1
G	0.9	1.0	1.1
Н	-	0.6	-
K	0.7	0.8	0.9
М	0.8	0.9	1.0
N	0.4	0.5	0.6
Y ¹⁰⁾	-	-	0.1

Notes:

10) The height of the terminals to the mounting surface.

9.2 Electrode

Electrode Material: Cu

Δ0

Metallic Finishing: Electroless gold flashing (Au: $0.03~\mu$ and over, Ni: $3~\mu$ and over)

9.3 Weight

1.01g (TYP)

9.4 Pin Position List

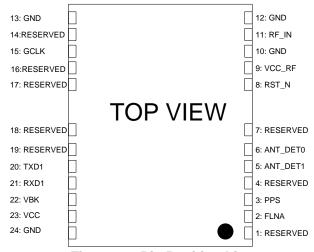


Figure 9.2 Pin Position List

10 Reference Design

10.1 Recommended Land Pattern

There are some signal lines and via holes on the bottom of the module. For avoiding any signal shortage, do not put any signal line nor via hole at the part of the user's board where is facing to the bottom of the module.

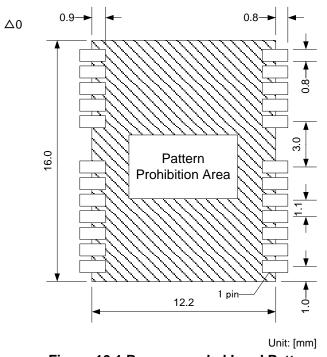


Figure 10.1 Recommended Land Pattern

10.2 Example of Connection

10.2.1 With Active Antenna △0

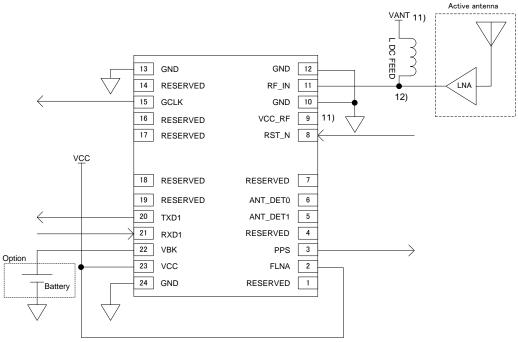
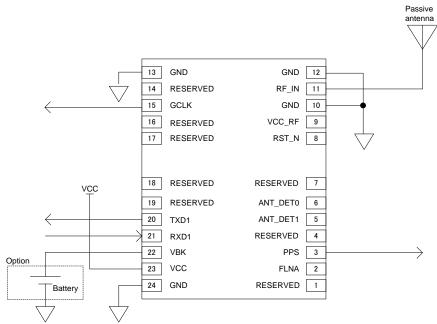
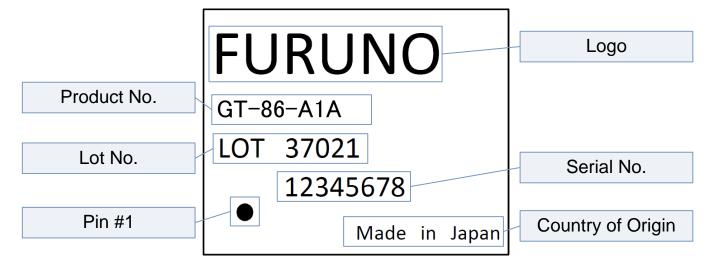


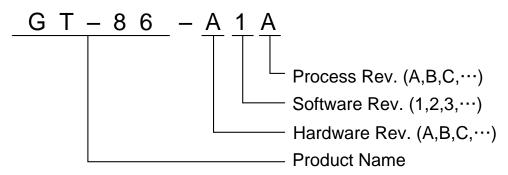
Figure 10.2 Example of Connection (with Active Antenna)

Notes:

- 11) VCC_RF, power supply output pin, can be used for VANT. However, when the signal line which the VANT voltage is superposed is short-circuited, the VCC_RF output current may exceed the absolute maximum rating I_{CC_RF_ABS}. Therefore, it is recommended to implement an over current protection circuit for preventing an over current.
- 12) In case of using an external antenna, it is recommended to implement the ESD protection with an ESD protection diode or a $\lambda/4$ short stub for preventing excessive stress to the RF_IN pin. Please refer "FURUNO GPS/GNSS Receiver 86/87 series User's Design Guide (SE13-900-001)" about the $\lambda/4$ short stub.

10.2.2 With Passive Antenna


Figure 10.3 Example of Connection (with Passive Antenna)

11 Marking

(1) Logo FURUNO (2) Product No. GT-86-A1A

(3) Lot No. LOT 37021

#	Code	Description		
а	LOT	"LOT"		
b	3	Year (last digit of the year number: 2015=5)		
С	7	Month (1 to 9, X, Y, Z)		
d	02	Date (01 to 31)		
е	1	Internal control number		

(4) Serial No. 12345678

Individual unique number

(5) Country of origin

Japan

(6) Pin 1 symbol

12 Handling Precaution

The section especially describes the conditions and the requests when mounting the product.

Surface mount products like this may have a crack when thermal stress is applied during surface mount assembly after they absorb atmospheric moisture. Therefore, please observe the following precautions:

- (1) This product contains semi-conductor inside. While handling this, be careful about the static electrical charge. To avoid it, use conductive mat, ground wristband, anti-static shoes, ionizer, etc. as may be necessary.
- (2) Try to avoid mechanical shock and vibration. Try not to drop this product.
- (3) When mounting this product, be aware of the location of the electrode.
- (4) This product should not be washed.
- (5) The reflow conditions are as shown in Section 13.1. The reflow can be done twice at most.
- (6) Surface mount products like this may have a crack when thermal stress is applied during surface mount assembly after they absorb atmospheric moisture. Therefore, please observe the following precautions:
 - 1 This moisture barrier bag may be stored unopened 12 months at or below 30°C/90%RH.
 - ② After opening the moisture bag, the packages should be assembled within 1 week in the environment less than 30°C/60%RH.
 - (3) If, upon opening, the moisture indicator card in the bag shows humidity above 30% or the expiration date has passed, they may still be used with the addition of a bake of 24 hours at 125°C. Caution: If the packing material is likely to melt at 125°C, heat-proof tray or aluminum magazine etc. must be used for high temperature.
 - 4 Expiration date: 12 months from the sealing date.
- (7) This module includes a crystal oscillator. It may not be able to maintain the characteristic under the vibrating condition, windy and cold conditions and noisy conditions. Please evaluate the module on ahead, if it may be used under these conditions.

13 Solder Profile

13.1 Reflow Profile

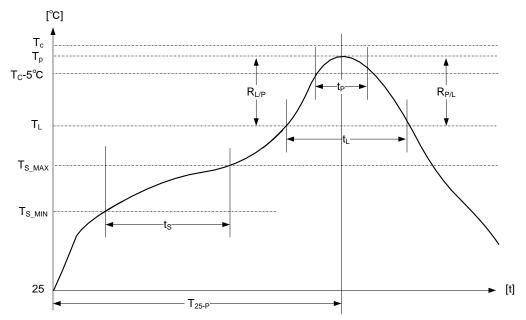


Figure 13.1 Condition of Reflow (Based on IPC/JEDEC J-SED-020D)

Table 13.1 Condition of Reflow (Pb-free)

Item	Symbol	Condition	Notes
Preheat/Soak Minimum Temperature	T _{S-MIN}	150°C	
Preheat/Soak Maximum Temperature	T _{S-MAX}	200°C	
Preheat/Soak Time from T _{S-MIN} to T _{S-MAX}	t _S	60 to 120 s	
Ramp-up rate T _L to T _P	$R_{L/P}$	3°C/s (Max)	
Liquidus Temperature	T_L	217 to 220°C	
Time maintained above T _L	t_L	60 to150 s	
Specified classification temperature	T _C	260°C △0	
Time within 5°C of T _C	t _P	30 s	Tolerance for t _p is defined as a user maximum
Ramp-down rate T _L to T _P	$R_{P/L}$	6°C/s (Max)	
Time from 25°C to peak temperature	T _{25-P}	8 min. (Max)	

Notes:

- Please reflow according to Figure 13.1 and Table 13.1.
- Recommended temperature reflow profile pattern is lead free.
- Recommended atmosphere in chamber is Nitrogen.
- Oxygen density level is less than 1500 ppm.
- Profile temperature should be measured on top of the shielding case.
- Package condition except IPC/JEDEC J-STD-020D needs pre-baking.
- If customer should change to reflow profile from what we recommend due to temperature condition inside of reflow chamber. Please inquire us for impact on the following items.
 - · Soldering of module pad on customer's board and our module
 - · Solder re-melting of components mounted on our module

Table 13.2 shows the moisture sensitivity level and number of reflow for assembly at user side.

Table 13.2 Moisture Sensitivity Level, Number of Reflow for Assembly at User Side

Item	Condition
Moisture Sensitivity Level	3
Number of reflow for assembly at user side	2

13.2 Precaution about Partial Heating with the Way except Reflow

If the internal temperature when the product is heated partially with, for example, like a soldering iron, hot air and light beam welder exceeds 215 degree, the internal wiring may be disconnected by thermal stress.

14 Special Instruction

14.1 Electronic Component

Components in GT-86 module such as chip resistors, capacitors, memories and TCXO are planned to be purchased from multiple manufacturers/vendors according to FURUNO's procurement policy. So it is possible that multiple components from multiple manufacturers/vendors could be used even in the same production lot.

14.2 ESD Damage

GT-86 module may be damaged by ESD. FURUNO recommends that all modules should be handled with appropriate precautions. Failure to observe proper handling and installation procedures may cause damage.

14.3 RoHS

GT-86 complies with RoHS directives.

15 Reference Documents

- FURUNO 86&87Module Package Specifications (SE13-600-024)
- FURUNO 86/87 module products series reliability test (SE13-600-002)
- FURUNO GPS/GNSS Receiver 86/87 series User's Design Guide. (Document No. SE13-900-001)