DUAL INTERMEDIATE FREQUENCY (IF) ANALOG FRONT END FOR DIGITAL RADIO

FEATURES

- Qualified for Automotive Applications
- Two Intermediate Frequency (IF) Analog-to-Digital Converters (ADCs)
- Two 12-Bit Auxiliary Digital-to-Analog Converters (DACs)
- Integrated IF Digital Processing Core
- Integrated Circuitry for Third-Overtone Master Clock Oscillator
- Wakeup Circuit/Real-Time Clock With Separate Crystal Oscillator
- Flexible Data Interface Optimized for TMS Family of Digital Baseband Processors
- Pin-Selectable SPITM and I ${ }^{2} \mathbf{C}^{\text {TM }}$ Control Interfaces
- 3.3-V/1.8-V Supply (Integrated Regulator Available to Optionally Generate $1.8-\mathrm{V}$ Supply)
- TQFP-100 PowerPAD ${ }^{\text {TM }}$ Package

APPLICATIONS

- IF-Sampled AM/FM Radio
- Hybrid Digital (HD) Digital Audio Broadcasting (DAB) Digital Radio

DESCRIPTION

The AFE8220 implements the intermediate frequency (IF) sampling and processing functions of a digital radio receiver system. It is designed to be used with TI's digital radio baseband processors and AM/FM tuners. The AFE8220 can also be programmed by the baseband processor for use in conventional AM/FM and digital radio. This unit includes two IF inputs with associated filtering and digital processing circuitry.
The receive circuit oversamples the radio tuner IF output to reduce noise and improve dynamic range. The IF analog-to-digital converter (ADC) oversamples the IF input at rates up to 75 MHz . the AFE8220 then digitally mixes, filters, and decimates the signal to provide in-phase (I) and quadrature (Q) output signals to the baseband processor. A clock oscillator circuit is provided that can be used with an appropriate third-overtone crystal and external tank circuit to generate the sampling clock for the IF ADCs.
The AFE8220 also includes a real-time clock and associated low-power oscillator circuit. Two auxiliary digital-to-analog converters (DACs) are included for system control functions. Other features include eight general-purpose input/output (GPIO) lines and programmable interrupt generators.
The AFE8220 is available in a TQFP-100 $(14 \mathrm{~mm} \times 14 \mathrm{~mm})$ package and uses a $3.3-\mathrm{V}$ and a $1.8-\mathrm{V}$ power supply. An onboard voltage regulator is included to optionally generate the $1.8-\mathrm{V}$ digital supply for the AFE8220.

ORDERING INFORMATION ${ }^{(1)}$

$\mathbf{T}_{\mathbf{A}}$	PACKAGE ${ }^{(2)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	HTQFP - PZP	Tray of 90	AFE8220IPZPQ1	AFE8220Q
			AFE8220TPZPQ1	AFE8220QT

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

[^0]This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range, unless otherwise noted. ${ }^{(1)}$

Supply voltage range	AVDD	-0.5 V to 3.6 V
	DVDD	-0.5 V to 3.6 V
	IOVDD	-0.5 V to 3.6 V
Voltage between	AGND to DGND	-0.3 V to 0.5 V
	AVDD to DVDD	-3.3 V to 3.3 V
Digital inputs ${ }^{(2)}$	-0.3 V to DVDD +0.3 V	
Digital data output	AFE82201	-0.3 V to $\mathrm{DVDD}+0.3 \mathrm{~V}$
Operating free-air temperature range, T_{A}	AFE8220T	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
	AFE8220T	$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Measured with respect to DGND.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
AVDD	Analog supply voltage		3.14	3.3	3.6	V
DVDD	Digital supply voltage		1.6	1.8	2.0	V
IOVDD	Output driver supply voltage		1.6		3.6	V
	Input common-mode voltage			VCM		V
	Differential input peak-to-peak voltage range			2		V
$\mathrm{V}_{1 \mathrm{H}}$	High-level digital input voltage		$0.7 \times$ IOVDD			V
V_{IL}	Low-level digital input voltage				OVDD	V
		AFE82201	-40		85	
A	Operating free-air temperature	AFE8220T	-40		105	${ }^{\circ} \mathrm{C}$
TJ	Operating junction temperature	AFE8220T	-40		125	${ }^{\circ} \mathrm{C}$

POWER SUPPLY SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}, \mathrm{DVDD}=1.8 \mathrm{~V}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Power Consumption				
Analog supply current		130	155	mA
Digital supply current	$\overline{\text { REG_ENB }}$ disabled	65	85	mA
Digital I/O supply current	REG_ENB disabled	35	50	mA
	$\overline{\text { REG_ENB }}$ enabled	105	125	mA
Power dissipation	REG_ENB disabled	660		mW
	REG_ENB enabled	725		mW
Reduced-Power Modes				
Software power-down	Control register address 1 set to 0×0000	100		mW
Hardware power-down	PWD enabled	50		$\mu \mathrm{W}$

IF ADC SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{AVDD}=I O \mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{DVDD}=1.8 \mathrm{~V}, \mathrm{f}_{\mathrm{S}}=75 \mathrm{MHz}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
DC Accuracy						
Input impedance				2		$k \Omega$
Offset error				3.0		mV
Gain error				1.0		\%FS
Full-scale input level		Peak differential, 1x gain		2.0		V
		Peak differential, 2x gain		1.0		V
Power Supply						
Power-supply rejection ratio, PSRR		AVDD $=3.15 \mathrm{VDC}$ to 3.6 VDC		72		dB
References						
Positive reference	REFP		1.9	2.0	2.1	V
Negative reference	REFN		0.9	1.0	1.1	V
Common-mode voltage	VCM		1.4	1.5	1.6	V
AC Performance						
Input sample rate			75			MHz
Signal-to-noise ratio within a limited passband	SNR	Input 10.7 MHz, -1 dBFS, in 3-kHz passband		105		dBc
		Input 10.7 MHz, -1 dBFS, in 100-kHz passband	85	90		
Third-order intermodulation distortion		-7-dB signals at 10.656 MHz and 10.729 MHz		91		dB
		-10-dB signals at 10.656 MHz and 10.729 MHz		94		
Spurious-free dynamic range	SFDR	-1-dB input at 10.7 MHz, 100-kHz passband	88	96		dBc

AUXILIARY DAC SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{AVDD}=1 \mathrm{OVDD}=3.3 \mathrm{~V}, \mathrm{DVDD}=1.8 \mathrm{~V}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Resolution				
Resolution		12		Bits
Output Voltage Range				
Output voltage range	Input code 0x000	0		V
	Input code 0x3FF	2.7		V
Settling Time				
Settling time	0.1\% of FSR		10	$\mu \mathrm{s}$
DC Performance				
Offset		± 1		\% of FSR
Gain error		± 5		\% of FSR
DNL	Monotonic	± 0.5		LSB
INL	Offset and gain errors removed	± 3.0		LSB
PSRR	Input code 0×200, AVDD $=3.15$ VDC to 3.6 VDC	30.0		dB

DIGITAL I/O SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, IOVDD $=3.3 \mathrm{~V}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I_{IH}	High-level input current	$\mathrm{V}_{\mathrm{IH}}=1.6 \mathrm{~V}$ to 3.6 V	-10	10	$\mu \mathrm{~A}$
I_{IL}	Low-level input current	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$ to 0.4 V	-10	10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OH}}$	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$	$0.8 \times \mathrm{IOVDD}$		
V_{OL}	Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A}$	V		

CLOCK OSCILLATOR SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, IOVDD $=1.8 \mathrm{~V}, \mathrm{DVDD}=1.8 \mathrm{~V}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX
UNIT				
$\mathrm{f}_{\text {XTAL }} \quad$ Crystal frequency	See the Master Clock Oscillatol section	20	75	MHz

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

TQFP-100
 Top View

TERMINAL FUNCTIONS

TERMINAL		FUNCTION	DESCRIPTION
NAME	NO.		
AVDD1	1	Supply	3.3-V analog supply (internally switched)
CDAC0	2	Output	Control DAC 0 output
AVSS	3	Ground	Analog ground
CDAC1	4	Output	Control DAC 1 output
AVDD1	5	Supply	$3.3-\mathrm{V}$ analog supply (internally switched)
AVDD1	6	Supply	$3.3-\mathrm{V}$ analog supply (internally switched)
AVSS	7	Ground	Analog ground
AVSS	8	Ground	Analog ground
IF_INP0	9	Input	IF ADC channel 0 positive input
IF_INM0	10	Input	IF ADC channel 0 negative input
IF_VCM	11	Output	IF ADC common-mode voltage
IF_REFP	12	Output	IF ADC positive reference
IF_REFM	13	Output	IF ADC negative reference
AVSS	14	Ground	Analog ground
AVDD1	15	Supply	3.3-V analog supply (internally switched)
AVDD1	16	Supply	$3.3-\mathrm{V}$ analog supply (internally switched)
AVSS	17	Ground	Analog ground
AVSS	18	Ground	Analog ground
IF_BIAS	19	Input	IF ADC bias input
AVSS	20	Ground	Analog ground
IF_INM1	21	Input	IF ADC channel 1 negative input
IF_INP1	22	Input	IF ADC channel 1 positive input
AVSS	23	Ground	Analog ground
AVSS	24	Ground	Analog ground
AVDD1	25	Supply	3.3-V analog supply (internally switched)
AVDD	26	Supply	3.3-V analog supply
AVDD	27	Supply	3.3-V analog supply
AVSS	28	Ground	Analog ground
AVDD	29	Supply	3.3-V analog supply
REFCLK	30	Output	Inverted reference clock output
REFCLK	31	Output	Reference clock output
AVSS	32	Ground	Analog ground
DVSS	33	Ground	Digital ground (for MCLK oscillator)
MCLKI	34	Input	MCLK oscillator input
MCLKO	35	Output	MCLK oscillator output
DVDD2	36	Supply	1.8-V digital supply (for MCLK oscillator)
AVSS	37	Ground	Analog ground
AVDD	38	Supply	3.3-V analog supply
AVSS	39	Ground	Analog ground
DVDD	40	Supply	1.8-V digital supply
IOVDD	41	Supply	3.3-V digital I/O supply
DVSS	42	Ground	Digital ground
IOVSS	43	Ground	Digital I/O ground
GRST	44	Input	Global reset (active low)
WAKEUP	45	Output	WAKEUP interrupt output
IRQ0	46	Output	Interrupt output 0

TERMINAL FUNCTIONS (continued)

TERMINAL		FUNCTION	DESCRIPTION
NAME	NO.		
IRQ1	47	Output	Interrupt output 1
IRQ2	48	Output	Interrupt output 2
PWD	49	Input	Power down pin (active high)
$\overline{\mathrm{RST}}$	50	Input	Reset pin (active low)
DVSS	51	Ground	Digital ground
DVDD	52	Supply	1.8-V digital supply
IOVSS	53	Ground	Digital I/O ground
IOVDD	54	Supply	3.3-V digital I/O supply
IF_DFSO	55	Output	IF interface frame sync
IF_DCLK	56	Output	IF interface bit clock
IF_DOUT3	57	Output	IF interface data out 3
DVSS	58	Ground	Digital ground
DVDD	59	Supply	1.8-V digital supply
IF_DOUT2	60	Output	IF interface data out 2
IF_DOUT1	61	Output	IF interface data out 1
IF_DOUT0	62	Output	IF interface data out 0
IOVSS	63	Ground	Digital I/O ground
IOVDD	64	Supply	3.3-V digital I/O supply
$\overline{\mathrm{CS}} / \mathrm{A} 1$	65	Input	SPI Chip select (active low) $/ 1^{2} \mathrm{C}$ address bit 1
MOSI/A0	66	Input	SPI data in $/ 1^{2} \mathrm{C}$ address bit 0
MISO/SDA	67	Bidirectional	SPI data out $/ I^{2} \mathrm{C}$ SDA
SCK/SCL	68	Input	SPI clock / $1^{2} \mathrm{C}$ SCL
CTRL_MODE	69	Input	Control interface mode select ($\mathrm{SPI}=0, \mathrm{I} 2 \mathrm{C}=1$)
$\overline{\text { REG_ENB }}$	70	Input	Enable onboard DVDD regulator (active low)
DVSS	71	Ground	Digital ground
DVDD	72	Supply	1.8-V digital supply
GPIO7	73	Bidirectional	GPIO 7
GPIO6	74	Bidirectional	GPIO 6
GPIO5	75	Bidirectional	GPIO 5
GPIO4	76	Bidirectional	GPIO 4
GPIO3	77	Bidirectional	GPIO 3
GPIO2	78	Bidirectional	GPIO 2
GPIO1	79	Bidirectional	GPIO 1
GPIO0	80	Bidirectional	GPIO 0
DVSS	81	Ground	Digital ground
DVSS	82	Ground	Digital ground
IOVSS	83	Ground	Digital I/O ground
DVSS	84	Ground	Digital ground
IOVDD	85	Supply	3.3-V digital I/O supply
DVDD	86	Supply	1.8-V digital supply
AVSS	87	Ground	Analog ground
AVDD	88	Supply	3.3-V analog supply
AVSS	89	Ground	Analog ground
DVDD1	90	Supply	1.8-V digital supply (for RTC oscillator)
RTCO	91	Output	RTC oscillator output
RTCI	92	Input	RTC oscillator input

TERMINAL FUNCTIONS (continued)

TERMINAL		FUNCTION	
NAME	NO.		
DVSS	93	Ground	Digital ground (for RTC oscillator)
AVSS	94	Ground	Analog ground
RTC_REF	95	Output	RTC output
RTC_REF	96	Output	Inverted RTC output
AVDD	97	Supply	3.3-V analog supply
AVSS	98	Ground	Analog ground
AVDD	99	Supply	3.3-V analog supply
AVDD	100	Supply	3.3-V analog supply

OUTPUT DATA INTERFACE

Figure 1. Output Data Interface Timing
Output Data Interface Timing

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{D} 1}$	DCLK to DFSO delay		-2.9	3.7	ns
$\mathrm{t}_{\mathrm{D} 2}$	DCLK to DOUTx delay		-3.1	3.8	ns

SPI CONTROL INTERFACE

Figure 2. SPI Control Interface Timing

SPI Control Interface Timing

PARAMETER		CONDITIONS	MIN	TYP MAX	UNIT
$\mathrm{f}_{\text {SCK }}$	Maximum SCK frequency			1	MHz
t_{L}	$\overline{\mathrm{CS}}$ lead time	Trailing $\overline{\mathrm{CS}}$ to leading SCK	5.0		ns
t_{T}	$\overline{\mathrm{CS}}$ trail time	Trailing SCK to leading $\overline{\mathrm{CS}}$	5.0		ns
t_{1}	$\overline{\mathrm{CS}}$ idle time	Leading $\overline{\mathrm{CS}}$ to trailing $\overline{\mathrm{CS}}$	5.0		ns
$\mathrm{t}_{\text {SU3 }}$	MOSI to SCK setup time		5.0		ns
$\mathrm{t}_{\mathrm{H} 3}$	MOSI to SCK hold time		1.0		ns
$\mathrm{t}_{\mathrm{D} 4}$	SCK to MISO delay		1.0	10.4	ns

$I^{2} \mathrm{C}$ BUS INTERFACE

Figure 3. $I^{2} \mathrm{C}$ Bus Interface Timing
$I^{2} C$ Bus Interface Timing

PARAMETER		MIN	TYP MAX	UNIT
$\mathrm{f}_{\text {SCK }}$	SCK clock frequency	0	400	kHz
$\mathrm{V}_{\text {IL }}$	Input voltage, low		$0.3 \times \mathrm{V}_{\mathrm{DD}}$	V
V_{IH}	Input voltage, high	$0.7 \times \mathrm{V}_{\mathrm{DD}}$		V
$\mathrm{t}_{\text {StART }}$	Setup time for START or repeated START condition	0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {Stop }}$	Setup time for STOP condition	0.6		$\mu \mathrm{s}$
tLow	LOW period of SCK clock	1.3		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	HIGH period of SCK clock	0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HD} \text { _ }} \mathrm{DAT}^{\text {a }}$	Data hold time from SCK falling	$100{ }^{(1)}$		ns
		250		
$\mathrm{t}_{\text {SU_DAT }}$	Data setup time to SCK rising	$100{ }^{(1)}$		ns
		250		
$\mathrm{t}_{\text {BUF }}$	Bus free time between a STOP and START condition	4.7		$\mu \mathrm{s}$

(1) Valid when MCLK $>20 \mathrm{MHz}$; otherwise is 250 ns .

DETAILED DESCRIPTION

Reset Pins

The AFE8220 has two active-low reset pins, $\overline{\mathrm{GRST}}$ and $\overline{\mathrm{RST}}$. When $\overline{\mathrm{GRST}}$ is brought low, all registers on the chip are brought to default values (0 , unless otherwise specified). When RST is brought low, all registers are brought to default values except for:

- Real-time clock registers (counters and alarms)
- Registers to configure the WAKEUP interrupt
- Registers controlling the GPIO pins

These registers are left in the previously programmed states.

Analog Supply Connections

A clean 3.3-V analog supply should be connected to all AVDD pins (26-27, 29, 38, 88, 97, and 99-100). Limited decoupling is required on the AVDD pins; a $0.1-\mathrm{mF}$ capacitor near pins 29 and 38 and another capacitor near pins 88 and 97 should suffice.
The AFE8220 contains an internal analog switch that is used to disconnect power from the major analog blocks when the PWD pin is high. When the PWD pin is low, the AVDD1 pins ($1,5,6,15,16$, and 25) are internally connected to the AVDD pins (26, 27, 99, and 100). Because the AVDD1 pins are actually the active supply pins for the IF ADC and other analog components, the AVDD1 pins should be heavily bypassed with a minimum of parallel $0.1-\mu \mathrm{F}$ and $0.01-\mu \mathrm{F}$ ceramic capacitors at each pin (or pin pair).

Digital Supply Connections

The digital supply connections depend on whether the onboard regulators are used to generate the 1.8-V digital core voltage (REG_ENB low); or if the digital core voltage comes from a system-level supply ($\overline{R E G}$ _ENB high). In either case, all IOVDD pins should be connected to the $3.3-\mathrm{V}$ IO supply and appropriately bypassed. If the internal regulators are used, this supply also sources the current drawn by the digital core.

External 1.8-V Core Supply

If an external $1.8-\mathrm{V}$ supply is used, all DVDD pins should be connected to the $1.8-\mathrm{V}$ supply and appropriately bypassed with $0.1-\mu \mathrm{F}$ and $0.01-\mu \mathrm{F}$ capacitors. DVDD1 and DVDD2 pins may also be connected directly to the 1.8-V supply or may be optionally connected through a small (1Ω to 10Ω) series resistor to reduce supply noise coupling into the MCLK oscillator (powered through DVDD1) or the RTC oscillator (powered through DVDD2).

When using an external supply, the PWD pin disables the MCLK oscillator when high, shutting off the clock to most of the digital core. As long as the external $1.8-\mathrm{V}$ supply is maintained, all register settings in the digital core are maintained with PWD is high.

Internal 1.8-V Regulator

If the internal $1.8-\mathrm{V}$ regulator is used, then $0.1-\mu \mathrm{F}$ and $0.01-\mu \mathrm{F}$ decoupling capacitors should still be put at the DVDD, DVDD1, and DVDD2 pins. DVDD2 should still be connected to the DVDD pins either directly or through a small series resistor. DVDD1 must be isolated from DVDD and DVDD2.
While using the internal regulators, the MCLK oscillator and the internal regulators are disabled when the PWD pin is high. This condition causes most of the register settings to be lost, except for the registers associated with the real-time clock, GPIO, and WAKEUP interrupt. For this reason, the RST pin should be brought low prior to bringing the PWD pin low (to come out of power-down). The RST pin should be held low for at least 10 ms after PWD goes low to allow the internal regulators to stabilize.
Note that the internal regulators are linear regulators, and therefore are relatively inefficient. Power dissipation as a result of the digital core almost doubles when the internal regulators are used (same core current, but drawn from a $3.3-\mathrm{V}$ supply instead of a $1.8-\mathrm{V}$ supply). Whenever possible, the use of a more efficient external switching regulator is encouraged in order to minimize overall system power as well as to reduce the thermal stress on the AFE8220.

InSTRUMENTS

Control Interface

Configuration and control data are written to the AFE8220 via the control interface. The control interface supports two protocols, SPI and $I^{2} \mathrm{C}$. If the CTRL_MODE pin is tied low, then an SPI interface is implemented. If CTRL_MODE is tied high, then an $I^{2} \mathrm{C}$ protocol-compatible interface is implemented.

SPI Interface

The SPI interface consists of four signals: a serial clock (SCK), an active-low chip select ($\overline{\mathrm{CS}}$), a serial data input (MOSI: master out, slave in), and a serial data output (MISO: master in, slave out). Data are transferred in groups of 32 bits. The first 16 bits are the instruction, which indicates:

1. If data are to be written or to be read;
2. If the data target is a register or RAM; and
3. The address of the data target.

The second 16 bits are the data transfer, which is input on MOSI for a write cycle or output on MISO for a read cycle.
Figure 4 shows an SPI write cycle. The cycle is initiated by the high-to-low transition of the $\overline{\text { CS }}$ line. 32 SCK pulses clock the instruction and the data into the MOSI line. Data are clocked in MSB first. The first 16 bits are the instruction. There are two possible write cycle instructions: register write and memory write. The formats for these instructions are shown in Figure 5 and Figure 6, respectively.
The only information required for a register write is the five-bit register address (REG_ADDR). For a memory write, both the two-bit memory select (MEM) plus the eight-bit memory address (MEM_ADDR) are required.
Following the 16 -bit instruction, the 16 -bit data word is clocked in, again MSB first. At the end of the write cycle, this data word is written to the appropriate register or memory location in the AFE8220.

Figure 4. SPI Control Interface Write Cycle

Figure 5. Register Write Instruction Format

Figure 6. Memory Write Instruction Format
Figure 7 shows the SPI interface read cycle. It is similar to the write cycle, except that instead of the data word being clocked into MOSI during the second half of the cycle, the data word is clocked out of MISO. Note that only register reads are permitted; RAM reads cannot be read back.
For reading and writing, data block transfers are supported. For a block transfer, multiple data words are transmitted following the memory read or write instruction. The data words are read from or written sequentially starting at the address contained in the instruction. The sequential access terminates when the $\overline{C S}$ line goes high. Figure 8 shows a register block read cycle. In the illustration, three succeeding register locations are read starting at address N . The block write cycle is similar except, of course, data are clocked into MOSI.

In all cases, the control interface is reset when $\overline{\mathrm{CS}}$ goes high. If the final SCK is not received before $\overline{\mathrm{CS}}$ goes high, then the cycle ends prematurely. For a read cycle, data transfer terminates; for a write cycle, no data are written to either a register or to memory.

$I^{2} \mathrm{C}$ Slave Interface

The AFE8220 control interface can be configured to provide $\mathrm{I}^{2} \mathrm{C}$ slave operation. It has a 10 -bit slave address of $00010010 A B$ and complies with the Philips $I^{2} \mathrm{C}$ specification. Note that address bits A and B are determined by the state of the $I^{2} \mathrm{C}$ address pins A 1 and A 0 . The mapping of SPI pins to $I^{2} \mathrm{C}$ pins is shown in table 1.

Table 1. SPI/ $/{ }^{2} \mathrm{C}$ Pin Mapping

CTRL_MODE $=\mathbf{0}(\mathbf{S P I})$	CTRL_MODE $=\mathbf{1}\left(\mathbf{I}^{2} \mathbf{C}\right)$
Chip select $(\overline{\mathrm{CS}})$	$\mathrm{I}^{2} \mathrm{C}$ address bit $(\mathrm{A} 1)$
Master out slave in (MOSI)	$\mathrm{I}^{2} \mathrm{C}$ address bit $(\mathrm{A} 0)$
Master in slave out (MISO)	Serial data line (SDA)
SPI clock (SCK)	Serial clock line (SCL)

The AFE8220 $I^{2} \mathrm{C}$ interface supports both fast mode (400 K bits $/ \mathrm{sec}$) and standard mode (100 K bits $/ \mathrm{sec}$) operation. However, if the master crystal frequency is less than 20 MHz , then only standard mode is supported.

Figure 7. SPI Control Interface Read Cycle

Figure 8. SPI Control Interface Block Read Cycle
As a reference, a typical data transfer on the $1^{2} \mathrm{C}$ bus is described in Figure 9. Each data byte is eight bits long and must be followed by an Acknowledge bit. Start and stop conditions are defined as a transition of the SDA signal with SCL high. A pulse of the SCL clock signal indicates the transfer of data or an Acknowledge bit on the SDA pin. The transmitting device drives SDA data during clock periods $1-8$. The receiving device acknowledges by driving SDA low during clock 9. Master devices always generate the SCL clock and initiate transactions. Refer to the Philips $I^{2} C$ Bus Specification for further details.
The AFE8220 has 16 -bit internal registers and operates on 16 -bit instructions. Because the $1^{2} \mathrm{C}$ interface is inherently an 8 -bit interface, special formats are required to send instructions and data between an $I^{2} \mathrm{C}$ Master and the AFE8220. The $I^{2} \mathrm{C}$ Write Operation and $I^{2} \mathrm{C}$ Read Operation sections describe these formats in detail.

${ }^{2}$ C Write Operation

Write operations require a start condition followed by two bytes describing both a 10-bit address format and the AFE8220 10-bit slave address. The next two bytes must contain the 16 -bit instruction word format described previously in Figure 5 or Figure 6, depending on the internal resource being addressed. Finally, a pair of bytes containing the 16 -bit write data must be provided. If additional 16 -bit writes are required, further pairs of bytes may be used as part of a block transfer. After the final pair of write data bytes, an $1^{2} \mathrm{C}$ stop condition must be provided to terminate the transaction. Figure 11 illustrates a block write transfer of $N 16$-bit data words. Gray areas denote slave-driven SDA cycles; white areas are master-driven.

${ }^{2}$ C Read Operation

Read operations require a start condition followed by two bytes describing both a 10-bit address format and the AFE8220 10-bit slave address. The next two bytes must contain the 16-bit instruction word format, as illustrated in Figure 10. A repeated start followed by the first byte of the slave address is then required to create a combined transaction. Note that the R/ \bar{W} bit is set to 1 (read), indicating that subsequent bytes are to be read from the slave. The AFE8220 presents addressed 16-bit data words in 8 -bit pairs until a NACK (N) is provided by the master. After the final pair of read data bytes, an $I^{2} \mathrm{C}$ stop condition must be provided to terminate the transaction. Figure 12 illustrates a block read transfer of N 16-bit data words. Gray areas denote slave-driven SDA cycles; white areas are master-driven.

Figure 9. Example Data Transfer on the $I^{2} C$ Bus

Figure 10. Register Read Instruction Format

Figure 11. Example $I^{2} C$ Write Operation

InSTRUMENTS

Figure 12. Example $\mathrm{I}^{2} \mathrm{C}$ Read Operation

IF ADCs (IF_ADC0 and IF_ADC1)

IF_ADC0 and IF_ADC1 are 12-bit pipeline ADCs that are used to sample the output of the tuner(s). Figure 13 shows recommended connections for the IF ADCs.

The IF ADCs have three power modes controlled by ifadc_en[0] and ifadc_en[1]. Full-power mode occurs when both ifadc_en[0] and ifadc_en[1] are high. In this case, both ADCs are biased to the highest levels and are ready to operate. If only ifadc_en[0] or ifadc_en[1] is high, then the converters are operating in reduced-power mode, where the enabled ADC is fully biased and ready to operate while the second ADC is in a low (but not zero) bias state (a minimum bias current is necessary to maintain safe voltages within the ADC core). In low-power mode, both ifadc_en[0] and ifadc_en[1] are low. In this case, all IF ADC circuits are in the minimum bias mode. Note that to reach a true sleep mode, the analog supply to the IF ADC block must be turned off.
When ifadc_gain0 is low, IF_ADC0 is in its normal 1x gain operating state. If ifadc_gain0 is high, then the gain of IF_ADC0 is changed to $2 x$. In a similar fashion, ifadc_gain1 controls the gain of IF_ADC1. Table 2 shows the ifadc_en and ifadc_gain control variable parameters.

Table 2. IF_ADC Control Register Settings

PARAMETER	ADDRESS	BITS
ifadc_en[0]	1	0
ifadc_en[1]	1	1
ifadc_gain0	1	2
ifadc_gain1	1	3

Figure 13. IF ADC Connections

IF ADC Alarm/Attenuator

The output of each IF ADC is monitored to ensure that the full-scale input range is not exceeded. If an ADC over-range condition occurs, an overflow signal is generated that may be used to generate an interrupt on the $I R Q$ line, depending on the settings in the IRQ interrupt generator.
In addition, programmable limits may be set for each IF ADC. If the absolute value of IF_ADCO exceeds if_adc_limit0 or the absolute value of IF_ADC1 exceeds ifadc_limit1, then an interrupt may be generated on IRQ again depending on the settings in the $I \bar{R} Q$ interrupt generator.
In the case of an IF ADC event, the IRQ status register can be read back to determine the type of event and on which ADC channel it occurred. The IRQ status register can be polled to determine if an IF ADC event has occurred in the case where IF ADC events are masked from generating an interrupt.
The control variable ddcO_atten causes an attenuation of the IF_ADC0 output prior to the DDC. The attenuation ranges in $3-\mathrm{dB}$ steps from 0 dB (for ddc0_atten $=0$) to -18 dB (for ddc0_atten =6). ddc1_atten has the same effect on the output of IF_ADC1.

AFE8220-Q1

In order to better synchronize the IF ADC attenuator with the tuner automatic gain control (AGC), a delay may be programmed between when a new value of ddc_atten is written and when it takes effect. When a new value of ddcO_atten is written, a counter (driven by MCLK) is initialized to ddcO_delay. When the counter reaches zero, the actual attenuation change occurs. Likewise, ddc1_delay affects ddc1_atten. Note that if a new ddc0_atten is written before the delay counter has reached zero from the previous write, the previous write is discarded. Table 3 shows the attenuator, delay, and limit control variables.

Table 3. IF ADC Control Register Settings

PARAMETER	ADDRESS	BITS
ddc0_atten	3	$2: 0$
ddc1_atten	15	$2: 0$
ddc0_delay	4	$15: 0$
ddc1_delay	16	$15: 0$
ifadc_limit0	46	$11: 0$
ifadc_limit1	47	$11: 0$

Digital Downconverter 0 (DDC0)

DDC0 operation is controlled by ddc_en[0]. When ddc_en[0] is 1 , operation of DDC0 is enabled. If ddc_en[0] is 0 , operation of DDC0 is disabled. Table 4 shows the DD̄C0 operation control settings.

Table 4. DDC Control Register Settings

PARAMETER	ADDRESS	BITS
ddc0_cic_dec_rate	9	$8: 0$
ddc0_cic_scale	10	$11: 6$
ddc0_cic_shift	10	$5: 0$
ddc0_demod_freq[31:16]	5	$15: 0$
ddc0_demod_freq[15:0]	6	$15: 0$
ddc0_demod_phase[31:16]	7	$15: 0$
ddc0_demod_phase[15:0]	8	$15: 0$
ddc0_fir1_base_address	11	$13: 8$
ddc0_fir1_mode	11	$1: 0$
ddc0_fir1_ncoeffs	11	$7: 2$
ddc0_fir1_nodec	14	9
ddc0_fir2_nodec	12	10
ddc0_fir2a_base_address	12	$15: 9$
ddc0_fir2a_mode	12	$1: 0$
ddc0_fir2a_ncoeffs	14	$8: 2$
ddc0_fir2a_shift	13	$3: 0$
ddc0_fir2b_base_address	13	$15: 9$
ddc0_fir2b_mode	13	$1: 0$
ddc0_fir2b_ncoeffs	14	$8: 2$
ddc0_fir2b_shift	14	$7: 4$
ddc0_interleave	1	8
ddc_en[0]	1	4
ddc_sync		6

Quadrature Mixer/NCO

The NCO frequency and initial phase are set by the 32 -bit unsigned variables ddcO_demod_freq and ddcO_demod_phase. The I and Q outputs of the mixer can be calculated by Equation 1] and Equation 2 .

$$
\begin{align*}
& \mathrm{I}=\mathrm{ADC} \times \cos (2 \pi \mathrm{ft}+\phi) \tag{1}\\
& \mathrm{Q}=\mathrm{ADC} \times \sin (2 \pi \mathrm{ft}+\phi) \tag{2}
\end{align*}
$$

where ADC is the output of the IF analog-to-digital converter, f is the NCO phase offset (in radians) given by Equation 3, and ϕ is the NCO phase offset (in radians) given by Equation 4.

$$
\begin{align*}
& \mathrm{f}=\mathrm{f}_{\text {MCLK }} \frac{\mathrm{ddc} \text { __demod_freq }}{2^{32}} \tag{3}\\
& \phi=2 \pi \frac{\text { ddcO_demod_phase }}{2^{32}} \tag{4}
\end{align*}
$$

The ddc_sync signal can be used to control the phase of the mixer. While the ddc_sync signal is high, the phase accumulator is held to a constant value ddcO_demod_phase, essentially holding it to 0 in Equation 1 and Equation 2. When the ddc_sync signal is brought low, the phase accumulator is incremented by the value ddc0_demod_freq once per MCLK cycle.

CIC Filter

The first stage of decimation filtering is provided by a fifth-order CIC filter. The operation of the CIC filter is controlled by the unsigned variables ddc0_cic_dec_rate, ddc0_cic_scale, and ddc0_cic_shift. The valid range for ddcO_cic_dec_rate is from 4 to 256.
The inherent dc gain of the CIC filter is ddcO_cic_dec_rate. The control variables ddcO_cic_shift and ddcO_cic_scale are used to reduce this very high gain before the signal is output to the next stage of the decimation filter. The combined effect of ddc0_cic_dec_rate, ddc0_cic_shift, and ddc0_cic_scale produces an overall dc gain for the CIC filter of Equation 5 .

$$
\begin{equation*}
\text { GAIN }=\text { ddcO_cic_dec_rate } \frac{\text { ddc0_cic_scale/32 }}{2_{\text {ddco_cic_shitt }}} \tag{5}
\end{equation*}
$$

In general, ddcO_cic_shift and ddcO_cic_scale should be chosen to make GAIN as close to 1 as possible. For example, if ddcO_cic_dec_rate is 20 , setting ddc0_cic_shift to 22 and ddcO_cic_scale to 41 results in a GAIN of 0.9775 .

First FIR Filter

The block following the CIC filter is a decimate-by-two finite impulse response (FIR) filter with programmable coefficients. ddc0_fir1_mode sets the type of filter response-ODD (MODE $=00$: symmetric impulse response, odd number of taps), EVEN (MODE = 01: symmetric impulse response, even number of taps), HALFBAND $($ MODE $=10)$, and ARBITRARY (MODE $=11$: non-symmetric impulse response).
The 16 -bit wide filter coefficients are stored in memory bank 0 . Up to 64 coefficients can be stored in this memory. Depending on the types of filters desired and the number of taps, coefficients for multiple filter responses may be stored in the memory bank. The filter response may be changed simply by updating the control register with new values for ddc0_fir1_mode, ddc0_fir1_ncoeff, and ddc0_fir1_base_addr.
ddcO_fir1_ncoeff defines the number of unique filter coefficients that make up the filter response. ddcO_fir1_base_addr defines the memory location where the first filter coefficient is stored. The actual filter length is a function of the ddc0_fir1_mode and ddc0_fir1_ncoeff, as shown in Equation 6 .

Instruments

Filter Length $=2 \times($ ddc0_fir1_ncoeff -1$)+1$ for ODD
Filter Length $=2 \times$ ddcO_fir1_ncoeff for EVEN
Filter Length $=4 \times($ ddc0_fir1_ncoeff -1$)+1$ for HALFBAND
Filter Length $=$ ddc0_fir1_ncoeff for ARBITRARY
The maximum filter length that can be realized is limited by two factors. First, the number of clock cycles between successive filter outputs limits the number of coefficients that can be processed, as shown in Equation 7 .

$$
\begin{equation*}
\text { ddc0_fir1_ncoeff } \leq 2 \times \text { ddc0_cic_dec_rate } \tag{7}
\end{equation*}
$$

where ddcO_cic_dec_rate is the decimation ration of the CIC filter.
Second, the size of the data memory (which stores incoming data samples) limits filter length to 62 taps.
The dc gain of the FIR filter depends on the coefficient values and the filter mode. For ODD mode and HALFBAND mode, the dc gain is given by Equation 8:

$$
\begin{equation*}
\text { GAIN }=\left(\frac{h_{\text {NCOEFF }}+\sum_{n=1}^{\text {NCOEFF }-1} 2 h_{n}}{2^{15}-1}\right) \tag{8}
\end{equation*}
$$

where h_{n} is the $n^{\text {th }}$ of NCOEFF filter coefficients stored in memory.
For EVEN mode the, dc gain is shown by Equation 9:

$$
\begin{equation*}
\text { GAIN }=\left(\frac{\sum_{n=1}^{\text {NCOEFF }} 2 h_{n}}{2^{15}-1}\right) \tag{9}
\end{equation*}
$$

while for ARBITRARY mode the gain is shown by Equation 10:

$$
\begin{equation*}
\text { GAIN }=\left(\frac{\sum_{n=1}^{\text {NCOEFF }} h_{n}}{2^{15}-1}\right) \tag{10}
\end{equation*}
$$

Second FIR Filters

The first FIR filter is followed by two parallel second FIR filters, FIR2A and FIR2B. Duplicate filters allow the output of two I and Q output streams with different bandwidths. For example, the bandwidth of FIR2A may be set wide to accommodate reception of digital broadcasts, while FIR2B may be set narrower to receive an analog broadcast sharing the same band. Coefficients for FIR2A are stored in memory bank 1 (MEM = 1) and coefficients for FIR2B are stored in memory bank 2 ($\mathrm{MEM}=2$).
The operation of the second FIR filter is similar to the first FIR filter with several notable exceptions. First, the depths of the coefficient and data memories are doubled to 128. This size increase allows for filters up to 126 taps to be realized without running out of data memory. It also allows longer sets of filter coefficients to be stored in coefficient memory.
Second, because of the additional decimation by two from the first FIR filter, twice as many MCLK cycles are available to process coefficients, increasing the maximum allowable value of NCOEFF, as shown in Equation 11 and Equation 13

$$
\begin{align*}
& \text { ddc0_fir2a_ncoeff } \leq 4 \times \text { ddc0_cic_dec_rate } \tag{11}\\
& \text { ddc0_fir2b_ncoeff } \leq 4 \times \text { ddcO_cic_dec_rate } \tag{12}
\end{align*}
$$

Third, in the first FIR filter the total of all the filter tap weights must add up to ($2^{15}-1$) to achieve unity gain through the filter. With longer filters (and therefore, smaller coefficients), frequency response errors may be introduced as a result of coefficient truncation. A Shift parameter has been added to the second FIR filter to alleviate this problem. The total of all filter tap weights must add up to $\left(2^{15+d d c o _ \text {_fir2a_shift }}-1\right)$ to achieve unity gain through FIR2A (similarly for ddc0_fir2b_shift and FIR2B). Note that shift values for FIR2A and FIR2B can be set separately.

Extended-Length Filter Mode

If FIR2A or FIR2B cannot provide enough filter taps to achieve the desired frequency response, setting control bit ddcO_interleave puts the two filters into an interleaved mode that doubles the length of the filter that can be realized. However, there are several limitations:

1. Only odd symmetrical filters may be realized;
2. The filter length M must be such that $(M+1) / 4$ is an integer; and
3. Only one filter can be realized (in ddc_interleave mode the A and B outputs are identical: $I B=I A$ and $Q B=Q A$).
In addition to setting the ddcO_interleave bit, FIR2A must be set to EVEN mode and FIR2A must be set to ODD mode. ddc0_fir2a_ncoeff and ddc0_fir2b_ncoeff are both set to ($\mathrm{M}+1$)/4. ddc0_fir2a_shift and ddc0_fir2b_shift should be identical. There are no restrictions on ddc0_fir2a_base_addr or ddcO_fir2b_base_addr.
The M-tap filter has $(M+1) / 2$ unique coefficients. The first, third, fifth, etc. coefficients are loaded into the FIR2A coefficient memory; the second, fourth, sixth, etc. coefficients are loaded into the FIR2B memory. The center coefficients of the filter end up as the last coefficient loaded into FIR2B.

FIR Filter Transfer Functions

Equation 13 to Equation 21 show transfer functions and dc gain for the various filter modes. Generic names for the control variables are used; just substitute the appropriate variable (that is, ddc0_fir2a_ncoeff for NCOEFF) as necessary. Also, note that SHIFT has a value of 0 for FIR1.

Basic Filter Modes

$$
\begin{align*}
& H_{\text {ODD }}(z)=\sum_{n=0}^{\text {NCOEFF }-2} \operatorname{COEFF}_{\text {BASE_ADDR }+n} \times\left(z^{-n}+z^{-(2 \times \text { NCOEFF }-2-n)}\right)+\operatorname{COEFF}_{\text {BASE_ADDR }+ \text { NCOEFF }-1} \times z^{\text {NCOEFF }-1} \tag{13}\\
& H_{\text {HALFBAND }}(\mathrm{z})=\sum_{\mathrm{n}=0}^{\text {NCOEFF-2 }} \operatorname{COEFF}_{\text {BASE_ADDR }+\mathrm{n}} \times\left(\mathrm{z}^{-2 n}+\mathrm{z}^{-(4 \times \text { NCOEFF }-6-2 n)}\right)+\text { COEFF }_{\text {BASE_ADDR }+ \text { NCOEFF }-1} \times \mathrm{z}^{2 \times \text { NOOEFF }-3} \tag{14}\\
& \mathrm{H}_{\text {ARBITPARY }}(\mathrm{z})={ }_{\mathrm{n}=0}^{\mathrm{NCOEFF}-1} \operatorname{COEFF} \mathrm{FASE}_{\text {BADDR }+\mathrm{n}} \times \mathrm{z}^{-\mathrm{n}} \tag{15}\\
& \operatorname{GAIN}_{\text {EVEN }}(z)=2^{\text {-SHIFT }} \times \frac{2 \times \sum_{\sum_{n=0}^{\text {NCOEFF }-1}}^{\text {COEFFF }} \operatorname{CASSEADDR~}+\mathrm{n}}{2^{15}-1} \tag{16}\\
& \operatorname{GAIN}_{\text {ODD }}=\operatorname{GAIN}_{\text {HALFBAND }}=2^{\text {-SHIFT }} \times \frac{2 \times \sum_{n=0}^{\text {NCOEFF-2 }} \operatorname{COEFF}_{\text {BASE_ADDR }+\mathrm{n}}+\text { COEFF }_{\text {BASE_ADDR }+ \text { NCOEFF }-1}}{2^{15}-1} \tag{17}\\
& \operatorname{GAIN}_{\text {ARBITRARY }}(\mathrm{z})=2^{\text {-SHIFT }} \times \frac{\sum_{\mathrm{n}=0}^{\text {NCOEF- }-1} \operatorname{COEFF}_{\text {BASE_ADDR }+\mathrm{n}}}{2^{15}-1} \tag{18}
\end{align*}
$$

Extended-Length Filter Mode

Digital Downconverter 1 (DDC1)

The description of DDC1 is identical to the description of DDC0, with the following exceptions:

1. DDC1 is enabled by ddc_en[1].
2. Control variables are prefixed with $d d c 1$ instead of $d d c 0$.
3. FIR coefficients are stored in memory banks 3,4 , and 5 instead of 0,1 , and 2 .

Table 5 shows the DDC1 operation control settings.

IF Data Interface

The two DDCs produce a total of eight 16 -bit output values (I and Q from each of four final-stage FIR filters). The IF data interface time-multiplexes these eight values onto four serial lines. The IF data interface also generates the necessary clock and frame sync signals to complete the interface to the DSP. The general timing of the IF data interface is shown in Figure 14.
Note that each serial line (IF_DOUTO through IF_DOUT3) can carry up to four time-multiplexed 16-bit signals. The actual number of signals per line is limited by:
a. the frequency of IF_DCLK, which can be programmed to be the same as the IF sampling clock (MCLK), one-half the IF sampling frequency, or one-fourth the IF sampling frequency; and
b. the overall decimation ratio of the DDC that determines the frequency of IF_DFSO pulses and therefore the number of IF_DCLK cycles available to clock out data.

Table 5. IF Control Register Settings

PARAMETER	ADDRESS	BITS
ddc1_cic_dec_rate	21	$8: 0$
ddc1_cic_scale	22	$11: 6$
ddc1_cic_shift	22	$5: 0$
ddc1_demod_freq[31:16]	17	$15: 0$
ddc1_demod_freq[15:0]	18	$15: 0$
ddc1_demod_phase[31:16]	19	$15: 0$
ddc1_demod_phase[15:0]	20	$15: 0$
ddc1_fir1_base_address	23	$13: 8$
ddc1_fir1_mode	23	$1: 0$
ddc1_fir1_ncoeffs	23	$7: 2$
ddc1_fir1_nodec	26	9
ddc1_fir2_nodec	26	10
ddc1_fir2a_base_address	24	$15: 9$
ddc1_fir2a_mode	24	$1: 0$
ddc1_fir2a_ncoeffs	24	$8: 2$

Table 5. IF Control Register Settings (continued)

PARAMETER	ADDRESS	BITS
ddc1_fir2a_shift	26	$3: 0$
ddc1_fir2b_base_address	25	$15: 9$
ddc1_fir2b_mode	25	$1: 0$
ddc1_fir2b_ncoeffs	25	$8: 2$
ddc1_fir2b_shift	26	$7: 4$
ddc1_interleave	26	8
ddc_en[1]	1	5
ddc_sync	1	6

Figure 14. IF Data General Timing
Control register variables dout0_config, dout1_config, dout2_config, and dout3_config, are used to assign specific output data streams to particular time slots in the IF interface output frame. Each register is broken into four 4-bit values, each of which is used to assign the source for a given time slot according to Table 6 .

Table 6. Time Slot Sources

VALUE	SOURCE
0	No source assigned
1	DDC0, FIR2A, I
2	DDC0, FIR2A, Q
3	DDC0, FIR2B, I
4	DDC0, FIR2B, Q
5	DDC1, FIR2A, I
6	DDC1, FIR2A, Q
7	DDC1, FIR2B, I
8	DDC1, FIR2B, Q

dout0_config controls the four time slots of IF_DOUTO, register 24 controls the four time slots of IF_DOUT1, and so on. The mapping of register bits to time slots is summarized in Table 7 .

Table 7. Register Bit Mapping

PARAMETER	[15:12]	[11:8]	[7:4]	[3:0]
dout0_config	D0	C0	B0	A0
dout1_config	D1	C1	B1	A1
dout2_config	D2	C2	B2	A2
dout3_config	D3	C3	B3	A3

Texas

For example, bits [11:8] of dout2_config set the source assignment for time slot C2 of IF_DOUT2.
The control variable if_dclk_div sets the frequency of IF_DCLK, as shown in Equation 22 and Equation 23 .

$$
\begin{array}{ll}
f_{\text {IF_DCLK }}=\frac{f_{\text {MCLK }}}{\text { if_dclk_div }} & \text { if_dclk_div }>1 \\
f_{\text {IF_DCLK }}=f_{\text {MCLK }} & \text { if_dclk_div } \leq 1 \tag{23}
\end{array}
$$

Normally the data and the frame sync change on the rising edge of IF_DCLK. If if_dclk_edge is set to 1 then IF_DCLK is inverted so that data and frame sync change on the falling edge of IF_DCLK.
The control value if_dfso_select determines which DDC is responsible for generating IF_DFSO. If if_dfso_select is 0 , then an IF_DF $\bar{S} O$ pulse is generated each time a new output is ready from DDC0. $\overline{\text { Similarly, if }}$ if_dso_select is 1 , then an IF_DFSO pulse is generated each time a new output is ready from DDC1. If the decimation rates of DDC0 and DDC1 are identical, then it does not matter which DDC initiates the IF_DFSO pulse. If the decimation rates are different, then the DDC with the smaller decimation ratio (higher output rate) should be chosen to generate the IF_DFSO pulse. Note that in this case, outputs from the slower DDC are repeated for multiple frames and it is the responsibility of the DSP software to compensate. This compensation is easiest to do if the higher decimation rate is an integer multiple of the lower decimation rate.
Finally, if_dfso_mode is used to select alternate forms of frame sync. In the default case (if_dfso_mode = 0), the frame sync is a high pulse one clock period wide that occurs the clock cycle before the first data bit of the serial output. If if_dfso_mode is set to 1 , then the frame sync changes polarity once per frame; again, one clock cycle before the first data bit of the frame. If if_dfso_mode is set to 2 , then the frame sync behaves like the default frame sync except that the sync pulse is 16 clock periods wide. The three frame sync modes are illustrated in Figure 15 and Figure 16. Table 8 shows the detailed timing conditions for Figure 16.
It is recommended that the DSP interface be configured to sample IF_DFSO and the four IF_DOUT lines on the trailing edge of IF_DCLK. Table 9 shows the dout, if_dclk, if_dfso, and if_dout operation control settings.

Table 8. Detailed Timing Conditions

		PARAMETER	MIN
$t_{\text {D1 }}$	IF_DCLK0 to IF_DFS0 delay	TYP	MAX
$t_{\text {D2 }}$	IF_DCLKO to IF_DOUTx delay	-2.9	

Table 9. Primary IF Control Register Settings

PARAMETER	ADDRESS	BITS
dout_en	1	7
if_dclk_div	31	$4: 0$
if_dclk_edge	31	5
if_dfso_mode	31	$8: 7$
if_dfso_select	31	6
if_dout0_config	27	$15: 0$
if_dout1_config	28	$15: 0$
if_dout2_config	29	$15: 0$
if_dout3_config	30	$15: 0$

Figure 15. Frame Sync Modes

Figure 16. Detailed Timing

Auxiliary DACS

CDAC0 is enabled by a high value set for cdac_en[0]. Similarly, CDAC1 is enabled by a high value set for cdac_en[1]. A control DAC that is disabled is put into a low-power state.
The control DAC outputs are set by the control variable cdacO_out for CDAC0 and CDAC1_OUT for CDAC1. A value of zero generates a 0 output from the control DAC while a value of 4095 generates a full-scale output from the control DAC. Table 10 shows the CDAC operation control settings.

Table 10. CDAC Control Register Settings

PARAMETER	ADDRESS	BITS
cdac_en[0]	1	9
cdac_en[1]	1	10
cdac0_out	37	$11: 0$
cdac1_out	38	$11: 0$

InSTRUMENTS

Master Clock Oscillator

The master clock oscillator supports third-overtone designs from 55 MHz to 75 MHz . It can also support fundamental operations in the $20-\mathrm{MHz}$ to $30-\mathrm{MHz}$ range. The recommended third-overtone circuit for third-overtone operation is shown in Figure 17 and Table 11.

Figure 17. Third-Overtone Operation

Table 11. Third-Overtone Operation Recommendations

FREQUENCY (MHz)	$\mathbf{C}_{\mathbf{1}} \mathbf{(\mathbf { p F })}$	$\mathbf{C}_{\mathbf{2}} \mathbf{(\mathbf { p F })}$	$\mathbf{L 1}(\boldsymbol{\mu H})$	$\mathbf{L 2}(\mu \mathbf{H})$	$\mathbf{R}_{\mathbf{1}}(\mathbf{k} \boldsymbol{\Omega})$
55	3	10	0.1	4.7	6.8
60	5	10	0.82	3.3	4.7
65	4	10	0.68	2.7	3.3
70	5	10	0.56	2.7	3.3
75	3	10	0.56	2.2	3.3

The master clock oscillator may be optionally divided down to provide a reference clock on the REFCLK pin. Control variable refclk_en enables the generation of the reference clock when high. Two variables, refclk_hi and refclk_lo, define the high and low periods of REFCLK in terms of MCLK cycles. REFCLK is high for refclk_hi cycles of MCLK, then low for refclk_lo periods of MCLK. REFCLK frequency is limited to integer submultiples of MCLK. Table 12 shows the refclk operation control settings.

Table 12. REFCLK Control Register Settings

PARAMETER	ADDRESS	BITS
refclk_en	1	13
refclk_hi	41	$15: 0$
refclk_lo	40	$15: 0$

Real-Time Clock Oscillator

The real-time clock oscillator supports crystals in the frequency range of 32.768 kHz through 150 kHz . The real-time clock module can be programmed to operate accurately with crystals in this frequency range.
The real-time clock oscillator output may be optionally output on the RTC_OUT pin when rtc_oe is set high. This option allows the real-time clock oscillator to be used as an alternate reference clock in the event that an acceptable frequency cannot be derived from MCLK. Table 13 shows the rtc_oe control setting.

Table 13. RTC Control Register Setting

PARAMETER	ADDRESS	BITS
rtc_oe	1	12

Real-Time Clock

The real-time clock (RTC) is enabled by setting rtc_en to 1 . While rtc_en is 0 , the RTC oscillator continues to run but the RTC registers do not advance.
The RTC can operate with a range of oscillator frequencies up to 100 kHz . At the beginning of each second, two times the value of rtc_max_count is loaded into the RTC crystal counter. This counter is decremented at the rate of the RTC oscillator until it hits zero, which generates a strobe that increments the seconds counter as well as re-initializes the RTC crystal counter. For a nominal $32.768-\mathrm{kHz}$ clock crystal, rtc_max_count should be set to 16,384 (the default value); for a nominal $100-\mathrm{kHz}$ crystal, rtc_max_count should be set to 50,000 . Table 15 illustrates the RTC control variable settings.

The RTC can be coarsely calibrated by adjusting the rtc_max_count to an appropriate value other than half the nominal crystal frequency. If finer calibration is required, compensation mode can be enabled by setting rtc_comp_en to 1. In compensation mode, the two's-complement value stored in rtc_comp_val is added to the one-second counter when it is re-initialized at the beginning of each hour; thus, the first second of each hour is lengthened or shortened depending on the sign of rtc_comp_val. The compensation can be applied to several seconds at the beginning of each hour; rtc_comp_cnt holds the number of seconds per hour to which the compensation is applied. By spreading the compensation out over a number of seconds, the impact on the length of any given second is minimized.

Setting and Reading the RTC

Because of the need to carefully synchronize any update of the RTC time registers (rtc_seconds, rtc_minutes, etc.), they must be written in a slightly different manner than the other control registers. Time registers must be written individually; after a particular register address is written, at least two clock cycles of the RTC oscillator must pass before another register write occurs. The MSB of each time register address can be polled to determine if it is safe to make another write: if the MSB is 1, the interface is still busy and a new write should not be initiated. If the MSB is 0 , then the interface is ready to accept another write. There is no limitation on reading the time registers.

Note that all time register values are BCD-encoded. Also note that the rtc_day_of_week is a read-only value that is internally calculated from the rtc_day, rtc_month, and rtc_year registers. Ranges on the various time registers are shown in Table 14.

Table 14. Time Register Ranges

PARAMETER	RANGE
rtc_seconds	0 to 59
rtc_minutes	0 to 59
rtc_hours	0 to 12 (12-hour mode); 0 to 24 (24-hour mode)
rtc_ampm	0 (AM) or 1(PM) 12-hour mode only
rtc_day	1 to 31
rtc_month	1 to 12 to 99 rtc_year (for years 2000 to 2099)
rtc_day_of_week	0 (Sunday) to 6 (Saturday)

Invalid combinations of rtc_day and rtc_month (trying to set February 30, for example) cause unpredictable behavior and should be avoided. The February 28/29 rollover variation based on leap year is automatically corrected for.

The RTC defaults to operate in 12 -hour plus AM/PM mode. To operate in 24 -hour mode (where the AM/PM bits are disabled) set rtc_mode to 1 . Care must be taken when switching between AM/PM mode and 24 -hour mode to avoid setting the time to a invalid value. See Figure 18 and Figure 19 for the proper procedures.

Real-Time Clock Alarm

The real-time clock alarm function can be used to generate an interrupt (or a wakeup interrupt) at a pre-programmed time. If the appropriate bit in an interrupt enable register is set, an interrupt will be generated when the values in the RTC time registers become equal to the values in the RTC alarm registers. The register settings are shown in Table 15.

Table 15. RTC Alarm Control Register Settings

PARAMETER	ADDRESS	BITS
rtc_seconds_alarm[6:0]	67	$6: 0$
rtc_minutes_alarm[6:0]	68	$6: 0$
rtc_hours_alarm[5:0]	69	$5: 0$
rtc_ampm_alarm	69	7
rtc_day_alarm[5:0]	70	$5: 0$
rtc_month_arlarm[4:0]	71	$4: 0$
rtc_year_alarm[7:0]	72	$7: 0$

GPIO

Eight general-purpose I/O pins are provided, labeled GPIOO through GPIO7. The direction of the eight GPIO pins can be independently set through control variable gpio_oe(7:0). A pin is an input if the corresponding bit of gpio_oe is 0 ; a pin is an output if the corresponding bit of gpio_oe is 1 .
The control variable gpio(7:0) serves different functions, depending on whether it is read from or written to. A read operation from gpio returns the logic state of the eight GPIO pins regardless of their direction. A write to gpio sets the output state of the GPIO pins if they are configured as outputs; there is no effect if the pin is configured as an input. Note that the write value of gpio is stored in a register, so that if a GPIO pin is changed from an input to an output its logic state is set by the stored value of gpio. Table 18 shows the gpio control variable settings.

The GPIO inputs can be optionally debounced if an RTC oscillator is running. Debouncing is controlled by gpio_delay, which is divided into eight 2-bit fields, each controlling a particular GPIO input according to table 16.

Table 16. gpio_delay

$[15: 14]$	$[13: 12]$	$[11: 10]$	$[9: 8]$	$[7: 6]$	$[5: 4]$	$[3: 2]$	$[1: 0]$
GPIO7	GPIO6	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0

Figure 18. Procedure for Updating RTC Hour When Going from $\mathbf{1 2}$-Hour Mode to $\mathbf{2 4}$-Hour Mode

Figure 19. Procedure for Updating RTC Hour When Going from 24-Hour Mode to 12-Hour Mode
The debounce circuitry uses a clock divided from the RTC oscillator, with a debounce clock frequency given by Equation 24.

$$
\begin{equation*}
\mathrm{f}_{\text {DEBOUNCE }}=\frac{\mathrm{f}_{\text {RTC }}}{2^{2 \times \text { GPIO_DEBOUNCE_FREQ }+1}} \tag{24}
\end{equation*}
$$

If debounce is enabled, then in order for a GPIO input to change value (and possibly generate an interrupt if so programmed) it must remain stable for the number of debounce clock cycles (zero to three) given in the appropriate field of gpio_delay.+

Table 17. General RTC Control Register Settings

PARAMETER	ADDRESS	BITS
rtc_ampm	75	7
rtc_comp_cnt[5:0]	64	$12: 7$
rtc_comp_en	64	2
rtc_comp_val	66	$15: 0$
rtc_day[5:0]	76	$5: 0$
rtc_day_of_week[2:0]	79	$2: 0$
rtc_en	64	0

Table 17. General RTC Control Register Settings (continued)

PARAMETER	ADDRESS	BITS
rtc_hours[5:0]	75	$5: 0$
rtc_max_count[15:0]	65	$15: 0$
rtc_minutes[6:0]	74	$6: 0$
rtc_mode	64	1
rtc_month[4:0]	77	$4: 0$
rtc_seconds[6:0]	73	$6: 0$
rtc_year[7:0]	78	$7: 0$

Table 18. GPIO Control Register Settings

PARAMETER	ADDRESS	BITS
gpio	43	$11: 0$
gpio_delay[15:0]	44	$15: 0$
gpio_oe	42	$11: 0$

Alternate Registers-GPIO and Input Attenuator

If some of the GPIO pins on the AFE8220 are to be used to control the gain of a tuner, it may be desirable to change the GPIO values at the same time as the input attenuation to the DDC. To make this process more deterministic, the control parameters gpio, ddc0_atten, and ddc1_atten can be accessed through the alternate control register addresses of 96 and 97 . By writing to register 96, gpio and ddc0_atten can be changed in a single register write; by writing to register 97, gpio and ddc1_atten can be changed in a single register write. Table 19 shows the operation control settings for these parameters.

Table 19. Alternate GPIO and DDC Control Register Settings

PARAMETER	ADDRESS	BITS
gpio	96	$7: 0$
	97	
ddc0_atten	96	$14: 12$
ddc1_atten	97	

Interrupt Generators

There are three programmable interrupt pins; IRQ0, IRQ1, and IRQ2. Only the operation of IRQ0 is described here; IRQ1 and IRQ2 are programmed in the same way, using different control variables.
Interrupts can be generated from various sources. Interrupt generation is enabled through irq0_en, as Table 20 shows.

Table 20. Interrupt Generation

BIT POSITION	SOURCE	BIT POSITION	SOURCE
0	GPIO	8	RTC alarm
1	None	9	RTC seconds rollover
2	I 2 C Master done	10	RTC minutes rollover
3	Aux ADC done	11	RTC hours rollover
4	IFADC0 over-range	12	RTC months rollover
5	IFADC1 over-range	13	RTC day rollover
6	IFADC0 limit	14	RTC year rollover
7	IFADC1 limit	15	-

AFE8220-Q1

Setting a bit of irq0_en allows the generation of an interrupt for the corresponding event. All three IRQ generators run on the master clock (MCLK). When an interrupt event occurs on a given source signal, a value of 1 is written to the corresponding bit of irq0_status. This value is held in irq0_status until it is explicitly cleared by writing a 0 to the appropriate bit of irq0_status. A typical sequence upon receipt of an interrupt would be to poll irq0_status to determine the source of the interrupt, take whatever system action is appropriate, and then clear irq0_status.

Changes to any of the GPIO pins can also be programmed as interrupts. GPIO pin events are defined as changes from low to high or from high to low, depending on whether the corresponding bit in irq0_gpio_edge is high or low. GPIO interrupts are enabled by setting the corresponding bit in irq0_gpio_en; they are identified and cleared by reading and writing the corresponding bit in irq0_gpio_status.

The behavior of the IRQ0 pin is determined by irq0_sense. When irq0_sense is 0, IRQ0 is normally low and goes high on an unmasked interrupt event. When irq0 sense is 1, IRQ0 is normally high and goes low on an unmasked interrupt event. Table 211 shows the irq0, irq1, and irq2 operations control settings.

Table 21. IRQ Control Register Settings

PARAMETER	ADDRESS	BITS
irq0_en	50	$15: 0$
irq1_en	55	$15: 0$
irq2_en	60	$15: 0$
irq0_gpio_edge	58	$11: 0$
irq1_gpio_edge	58	$11: 0$
irq2_gpio_edge	49	$11: 0$
irq0_gpio_en	54	$11: 0$
irq1_gpio_en	59	$11: 0$
irq2_gpio_en	52	$11: 0$
irq0_gpio_status	62	$11: 0$
irq1_gpio_status	2	$11: 0$
irq2_gpio_status	2	$11: 0$
irq0_sense	2	1
irq1_sense	51	3
irq2_sense	56	$15: 0$
irq0_status	61	$15: 0$
irq1_status		
irq2_status	57	

Wakeup Interrupt Generator

The WAKEUP interrupt generator functions in the same way as the IRQ generators with the following exceptions:

1. The WAKEUP generator runs on the RTC clock instead of MCLK;
2. The WAKEUP generator operates when the AFE is in low-power mode, whereas the IRQ generators do not; and
3. The interrupt sources for the WAKEUP interrupt generator are slightly different.

Table 22 shows the wakeup control settings. Table 23 shows the generator functions.
Table 22. Wakeup Control Register Settings

PARAMETER	ADDRESS	BITS
wakeup_sense	2	0
wakeup_gpio_edge	80	$11: 0$
wakeup_gpio_en	81	$11: 0$
wakeup_en	82	$15: 0$
wakeup_status	83	$15: 0$
wakeup_gpio_status	84	$11: 0$

Table 23. WAKEUP Interrupt Generator

BIT POSITION	SOURCE
0	GPIO
1	None
2	None
3	None
4	None
5	None
6	None
7	None
8	RTC alarm
9	RTC seconds rollover
10	RTC minutes rollover
11	RTC hours rollover
12	RTC months rollover
13	RTC day rollover
14	RTC year rollover

InSTRUMENTS

Control Register Assignments

Table 24. Control Registers

Address: 1 Description: Functional Block Enables			
Bits	Range	Action	Parameter Name
1:0	$0 . .3$	Enable IFADC converters	ifadc_en(1:0)
2	0/1	Gain control for IF_ADC0	ifadc_gain0
3	0/1	Gain control for IF_ADC1	ifadc_gain1
5:4	$0 . .3$	Enable DDCs	ddc_en(1:0)
6	0/1	Synchronize DDC0 and DDC1	ddc_sync
7	0/1	Enable primary IF data interface	dout_en
8	0/1	Enable secondary IF data interface	bb_en
10:9	$0 . .3$	Enable auxiliary DACs	cdac_en(1:0)
11	-	Not used	aux_adc_en
12	0/1	Enable RTC output pins	rtc_oe
13	0/1	Enable reference clock output pins	refclk_en
Address: 2 Description: Interrupt Output Level Configuration			
Bits	Range	Action	Parameter Name
0	0/1	0 = Active high WAKEUP interrupt	wakeup_sense
		1 = Active low WAKEUP interrupt	
1	0/1	0 = Active high IRQ0 interrupt	irq0_sense
		1 = Active low IRQ0 interrupt	
2	0/1	0 = Active high IRQ1 interrupt	irq1_sense
		1 = Active low IRQ1 interrupt	
3	0/1	0 = Active high IRQ2 interrupt	irq2_sense
		1 = Active low IRQ2 interrupt	
Address: 3 Description: DDCO Input Attenuator			
Bits	Range	Action	Parameter Name
2:0	$0 . .6$	Attenuation setting for DDC0	ddc_atten(2:0)
Address: 4 Description: DDCO Input Attenuator			
Bits	Range	Action	Parameter Name
15:0	$0 . .65535$	Delay setting for DDC0 attenuator	ddc0_delay(15:0)
Address: 5 Description: DDCO NCO Frequency			
Bits	Range	Action	Parameter Name
15:0	$0 . .65535$	Upper bytes of DDCO NCO frequency	ddc0_demod_freq(31:16)
Address: 6Description: DDCO NCO Frequency			
Bits	Range	Action	Parameter Name
15:0	$0 . .65535$	Lower bytes of DDCO NCO frequency	ddc0_demod_freq(15:0)
Address: 7Description: DDCO NCO Phase			
Bits	Range	Action	Parameter Name
15:0	$0 . .65535$	Upper bytes of DDCO NCO phase	ddc0_demod_phase(31:16)

Table 24. Control Registers (continued)

Address: 8Description: DDCO NCO Phase (continued)			
Bits	Range	Action	Parameter name
15:0	$0 . .65535$	Lower bytes of DDCO NCO phase	ddc0_demod_phase(15:0)
Address: 9Description: DDCO CIC Filter			
Bits	Range	Action	Parameter Name
8:0	$4 . .256$	CIC filter decimation rate	ddc0_cic_dec_rate(8:0)
Address: 10 Description: DDCO CIC Filter			
Bits	Range	Action	Parameter Name
5:0	$0 . .63$	CIC filter post-filter shift	ddc0_cic_shift(5:0)
11:6	$0 . .32$	CIC filter post-filter scale	ddc0_cic_scale(5:0)
Address: 11Description: DDC0 FIR Filter 1			
Bits	Range	Action	Parameter Name
1:0	$0 . .3$	FIR filter mode	ddc0_fir1_mode(1:0)
7:2	$0 . .63$	Number of coefficients to process	ddc0_fir1_ncoeffs(5:0)
13:8	$0 . .63$	Coefficient base address	ddc0_fir1_base_addr(5:0)
Address: 12 Description: DDCO FIR Filter 2A			
Bits	Range	Action	Parameter Name
1:0	$0 . .3$	FIR filter mode	ddc0_fir2a_mode(1:0)
8:2	$0 . .127$	Number of coefficients to process	ddc0_fir2a_ncoeffs(6:0)
15:9	$0 . .127$	Coefficient base address	ddc0_fir2a_base_addr(6:0)
Address: 13 Description: DDCO FIR Filter 2B			
Bits	Range	Action	Parameter Name
1:0	$0 . .3$	FIR filter mode	ddc0_fir2b_mode(1:0)
8:2	$0 . .127$	Number of coefficients to process	ddc0_fir2b_ncoeffs(6:0)
15:9	$0 . .127$	Coefficient base address	ddc0_fir2b_base_addr(6:0)
Address: 14 Description: DDCO FIR Filter Extended Features			
Bits	Range	Action	Parameter Name
3:0	$0 . .15$	Post-filter shift for FIR filter 2A	ddc0_fir2a_shift(3:0)
7:4	$0 . .15$	Post-filter shift for FIR filter 2B	ddc0_fir2b_shift(3:0)
8	0/1	Enable interleave mode for FIR filter 2A and FIR filter 2B	ddc0_interleave
9	0/1	Disable decimation for FIR filter 1	ddc0_fir1_nodec
10	0/1	Disable decimation for FIR filter 2A and FIR filter 2B	ddc0_fir2_nodec
Address: 15 Description: DDC1 Input Attenuator			
Bits	Range	Action	Parameter Name
2:0	$0 . .6$	Attenuation setting for DDC1	ddc1_atten(2:0)
Address: 16 Description: DDC1 Input Attenuator			
Bits	Range	Action	Parameter Name
15:0	$0 . .65535$	Delay setting for DDC1 attenuator	ddc1_delay(15:0)

INSTRUMENTS
AFE8220-Q1

Table 24. Control Registers (continued)

Address: 17Description: DDC1 NCO Frequency			
Bits	Range	Action	Parameter Name
15:0	$0 . .65535$	Upper bytes of DDC1 NCO frequency	ddc1_demod_freq(31:16)
Address: 18 Description: DDC1 NCO Frequency			
Bits	Range	Action	Parameter Name
15:0	$0 . .65535$	Lower bytes of DDC1 NCO frequency	ddc1_demod_freq(15:0)
Address: 19Description: DDC1 NCO Phase			
Bits	Range	Action	Parameter Name
15:0	$0 . .65535$	Upper bytes of DDC1 NCO phase	ddc1_demod_phase(31:16)
Address: 20 Description: DDC1 NCO Phase			
Bits	Range	Action	Parameter Name
15:0	$0 . .65536$	Lower bytes of DDC1 NCO phase	ddc1_demod_phase(15:0)
Address: 21 Description: DDC1 CIC Filter Decimation			
Bits	Range	Action	Parameter Name
8:0	$4 . .256$	CIC filter decimation rate	ddc1_cic_dec_rate(8:0)
Address: 22 Description: DDC1 CIC Filter			
Bits	Range	Action	Parameter Name
5:0	$0 . .63$	CIC filter post-filter shift	ddc1_cic_shift(5:0)
11:6	$0 . .32$	CIC filter post-filter scale	ddc1_cic_scale(5:0)
Address: 23 Description: DDC1 FIR Filter 1			
Bits	Range	Action	Parameter Name
1:0	$0 . .3$	FIR filter mode	ddc1_fir1_mode(1:0)
7:2	$0 . .63$	Number of coefficients to process	ddc1_fir1_ncoeffs(5:0)
13:8	$0 . .63$	Coefficient base address	ddc1_fir1_base_addr(5:0)
Address: 24 Description: DDC1 FIR Filter 2A			
Bits	Range	Action	Parameter Name
1:0	$0 . .3$	FIR filter mode	ddc1_fir2a_mode(1:0)
8:2	$0 . .127$	Number of coefficients to process	ddc1_fir2a_ncoeffs(6:0)
15:9	$0 . .127$	Coefficient base address	ddc1_fir2a_base_addr(6:0)
Address: 25 Description: DDC1 FIR Filter 2B			
Bits	Range	Action	Parameter Name
1:0	$0 . .3$	FIR filter mode	ddc1_fir2b_mode(1:0)
8:2	$0 . .127$	Number of coefficients to process	ddc1_fir2b_ncoeffs(6:0)
15:9	$0 . .127$	Coefficient base address	ddc1_fir2b_base_addr(6:0)

Table 24. Control Registers (continued)

Address: 26Description: DDC1 FIR Filter Extended Features			
Bits	Range	Action	Parameter Name
3:0	$0 . .15$	Post-filter shift for FIR filter 2A	ddc1_fir2a_shift(3:0)
7:4	$0 . .15$	Post-filter shift for FIR filter 2B	ddc1_fir2b_shift(3:0)
8	0/1	Enable interleave mode for FIR filter 2A and FIR filter 2B	ddc1_interleave
9	0/1	Disable decimation for FIR filter 1	ddc1_fir1_nodec
10	0/1	Disable decimation for FIR filter 2A and FIR filter 2B	ddc1_fir2_nodec
Address: 27 Description: Data Interface Configuration			
Bits	Range	Action	Parameter Name
15:0	$0 . .65535$	Configuration for IF_DOUT0	if_dout0_config
Address: 28 Description: Data Interface Configuration			
Bits	Range	Action	Parameter Name
15:0	$0 . .65535$	Configuration for IF_DOUT1	if_dout1_config
Address: 29 Description Data Interface Configuration			
Bits	Range	Action	Parameter Name
15:0	0..65535	Configuration for IF_DOUT2	if_dout2_config
Address: 30 Description: Data Interface Configuration			
Bits	Range	Action	Parameter Name
15:0	0..65535	Configuration for IF_DOUT3	if_dout3_config
Address: 31 Description: Data Interface Configuration			
Bits	Range	Action	Parameter Name
4:0	$0 . .16$	Divide factor to derive IF_DCLK from MCLK	if_dclk_div(4:0)
5	0/1	0: IF_DFSO and IF_DOUTx change on rising edge of IF_DCLK 1: IF DFSO and IF DOUTx change on falling edge of IF DCLK	if_dclk_edge
6	0/1	0: IF_DFSO generated by DDC0	if_dfso_select
		1: IF_DFSO generated by DDC1	
8:7	$0 . .2$	0: IF_DFSO one IF_DCLK cycle wide	if_dfso_mode(1:0)
		1: IF_DFSO toggles once per frame	
		2: IF_DFSO 16 IF_DCLK cycles wide	
Address: 32-36 Description: Not Used			
Bits	Range	Action	Parameter Name
-	-	-	-
Address: 37 Description: CDACO Output			
Bits	Range	Action	Parameter Name
11:0	$0 . .4095$	Output value for CDAC0	cdac0_out(11:0)
Address: 38 Description: CDAC1 Output			
Bits	Range	Action	Parameter Name
11:0	$0 . .4095$	Output value for CDAC1	cdac1_out(11:0)

Table 24. Control Registers (continued)

Address: 39Description:			
Bits	Range	Action	Parameter Name
-	-	-	-
Address: 40 Description: Reference Clock Configuration			
Bits	Range	Action	Parameter Name
15:0	$0 . .4095$	Low period (in units of MCLK cycles) for reference clock output	refclk_lo(15:0)
Address: 41 Description: Reference Clock Configuration			
Bits	Range	Action	Parameter Name
15:0	$0 . .4095$	High period (in units of MCLK cycles) for reference clock output	refclk_hi(15:0)
Address: 42 Description: GPIO Configuration			
Bits	Range	Action	Parameter Name
0	0/1	0 = GPIO0 set as input	gpio_oe(0)
		1 = GPIO0 set as output	
1	0/1	0 = GPIO1 set as input	gpio_oe(1)
		1 = GPIO1 set as output	
2	0/1	0 = GPIO2 set as input	gpio_oe(2)
		1 = GPIO2 set as output	
3	0/1	$0=$ GPIO3 set as input	gpio_oe(3)
		1 = GPIO3 set as output	
4	0/1	0 = GPIO4 set as input	gpio_oe(4)
		1 = GPIO4 set as output	
5	0/1	$0=$ GPIO5 set as input	gpio_oe(5)
		1 = GPIO5 set as output	
6	0/1	0 = GPIO6 set as input	gpio_oe(6)
		1 = GPIO6 set as output	
7	0/1	$0=$ GPIO7 set as input	gpio_oe(7)
		1 = GPIO7 set as output	

Table 24. Control Registers (continued)

Address: 43 Description: GPIO Configuration (continued)					
Bits	Range	Action	Parameter Name		
0	0/1	Register write: drives value on GPIO0 pin if enabled as output	gpio(0)		
		Register read: returns value on GPIO0 pin			
1	0/1	Register write: drives value on GPIO1 pin if enabled as output	gpio(1)		
		Register read: returns value on GPIO1 pin			
2	0/1	Register write: drives value on GPIO2 pin if enabled as output	gpio(2)		
		Register read: returns value on GPIO2 pin			
3	0/1	Register write: drives value on GPIO3 pin if enabled as output	gpio(3)		
		Register read: returns value on GPIO3 pin			
4	0/1	Register write: drives value on GPIO4 pin if enabled as output	gpio(4)		
		Register read: returns value on GPIO4 pin			
5	0/1	Register write: drives value on GPIO5 pin if enabled as output	gpio(5)		
		Register read: returns value on GPIO5 pin			
6	0/1	Register write: drives value on GPIO6 pin if enabled as output	gpio(6)		
		Register read: returns value on GPIO6 pin			
7	0/1	Register write: drives value on GPIO7 pin if enabled as output	gpio(7)		
		Register read: returns value on GPIO7 pin			
Address: 44 Description: GPIO Configuration					
Bits	Range	Action	Parameter Name		
1:0	$0 . .3$	GPIO0 debounce setting	gpio_delay (1:0)		
3:2	$0 . .3$	GPIO1 debounce setting	gpio_delay(3:2)		
5:4	$0 . .3$	GPIO2 debounce setting	gpio_delay(5:4)		
7:6	$0 . .3$	GPIO3 debounce setting	gpio_delay(7:6)		
9:8	$0 . .3$	GPIO4 debounce setting	gpio_delay(9:8)		
11:10	$0 . .3$	GPIO5 debounce setting	gpio_delay(11:10)		
13:12	$0 . .3$	GPIO6 debounce setting	gpio_delay(13:12)		
15:14	$0 . .3$	GPIO7 debounce setting	gpio_delay(15:14)		
Address: 45 Description: Not Used					
Bits	Range	Action	Parameter Name		
-	-	-	-		
Address: 46 Description: IF ADC Alarm					
Bits	Range	Action	Parameter Name		
11:0	0.. 2047	Alarm limit for IF_ADC0	ifadc0_limit(11:0)		
Address: 47 Description: IF ADC Alarm					
Bits	Range	Action	Parameter Name		
11:0	0.. 2047	Alarm limit for IF_ADC1	ifadc1_limit(11:0)		
Address: 48 Description: IRQ0 Configuration					
Bits	Range	Action	Parameter Name		
11:0	$0 . .4095$	GPIO input edge select for IRQ0	irq0_gpio_edge(11:0)		

InSTRUMENTS

Table 24. Control Registers (continued)

Address: 49 Description: IRQO Configuration			
Bits	Range	Action	Parameter Name
11:0	0.4095	IRQ0 GPIO enable	irq0_gpio_en(11:0)
Address: 50 Description: IRQO Configuration			
Bits	Range	Action	Parameter Name
15:0	0.65535	IRQ0 enable	irq0_en(15:0)
Address: 51 Description: IRQ0 Status			
Bits	Range	Action	Parameter Name
15:0	$0 . .65535$	Register read: returns IRQ0 status Register write: clears interrupt bit if 1 is written	irq0_status(15:0)
Address: 52 Description: IRQO GPIO Status			
Bits	Range	Action	Parameter Name
11:0	$0 . .4095$	Register read: returns IRQ0 status Register write: clears interrupt bit if 1 is written	irq0_gpio_status(11:0)
Address: 53 Description: IRQ1 Configuration			
Bits	Range	Action	Parameter Name
11:0	0.4095	GPIO input edge select for IRQ1	irq1_gpio_edge(11:0)
Address: 54 Description: IRQ1 Configuration			
Bits	Range	Action	Parameter Name
11:0	$0 . .4095$	IRQ1 GPIO enable	irq1_gpio_en(11:0)
Address: 55 Description: IRQ1 Configuration			
Bits	Range	Action	Parameter Name
15:0	0.65535	IRQ1 enable	irq1_en(15:0)
Address: 56 Description: IRQ1 Status			
Bits	Range	Action	Parameter Name
15:0	0.. 65535	Register read: returns IRQ1 status Register write: clears interrupt bit if 1 is written	irq1_status(15:0)
Address: 57 Description: IRQ1 GPIO Status (continued)			
Bits	Range	Action	Parameter Name
11:0	$0 . .4095$	Register read: returns IRQ1 status Register write: clears interrupt bit if 1 is written	irq1_gpio_status(11:0)
Address: 58 Description: IRQ2 Configuration			
Bits	Range	Action	Parameter Name
11:0	0.4095	GPIO input edge select for IRQ2	irq2_gpio_edge(11:0)
Address: 59 Description: IRQ2 Configuration			
Bits	Range	Action	Parameter Name
11:0	0.4095	IRQ2 GPIO enable	irq2_gpio_en(11:0)

Table 24. Control Registers (continued)

Address: 60 Description: IRQ2 Configuration					
Bits	Range	Action	Parameter Name		
15:0	$0 . .65535$	IRQ2 enable	irq2_en(15:0)		
Address: 61 Description: IRQ2 Status					
Bits	Range	Action	Parameter Name		
15:0	$0 . .65535$	Register read: returns IRQ2 status	irq2_status(15:0)		
		Register write: clears interrupt bit if 1 is written			
Address: 62 Description: IRQ2 GPIO Status					
Bits	Range	Action	Parameter Name		
11:0	$0 . .4095$	Register read: returns IRQ2 status	irq2_gpio_status(11:0)		
		Register write: clears interrupt bit if 1 is written			
Address: 63 Description: Not Used					
Bits	Range	Action	Parameter Name		
-	-	-	-		
Address: 64 Description: Real-Time Clock Configuration					
Bits	Range	Action	Parameter Name		
0	0/1	0 = Freeze real-time clock	rtc_en		
		1 = Enable real-time clock operation			
1	0/1	0:12 hour mode	rtc_mode		
		1:24 hour mode			
2	0/1	Enable clock compensation	rtc_comp_en		
3	0/1	Enable clock test mode	rtc_test_en		
6:4	$0 . .4$	Clock test mode selection	rtc_test_mode(2:0)		
12:7	$0 . .31$	Compensation count	rtc_comp_cnt(5:0)		
15:13	$0 . .7$	Frequency select for GPIO debounce	gpio_debounce_freq(2:0)		
Address: 65 Description: Real-Time Clock Configuration					
Bits	Range	Action	Parameter Name		
15:0	$0 . .32767$	Real-time one second terminal count	rtc_max_count(15:0)		
Address: 66 Description: Real-Time Clock Configuration (continued)					
Bits	Range	Action	Parameter Name		
15:0	-32768.32767	Real-time clock compensation value	rtc_comp_val(15:0)		
Address: 67 Description: Real-Time Clock Alarm					
Bits	Range	Action	Parameter Name		
6:0	$0 . .59$	Seconds alarm setting	rtc_seconds_alarm(6:0)		
Address: 68 Description: Real-Time Clock Alarm					
Bits	Range	Action	Parameter Name		
6:0	$0 . .59$	Minutes alarm setting	rtc_minutes_alarm(6:0)		

InSTRUMENTS

Table 24. Control Registers (continued)

Address: 69 Description: Realtime Clock Alarm					
Bits	Range	Action	Parameter Name		
5:0	$1 . .12$	Hour alarm setting, 12-hour mode	rtc_hours_alarm(5:0)		
	$0 . .23$	Hour alarm setting, 24-hour mode			
6	-	Not used	-		
7	0/1	12-hour mode: 0 = AM, 1 = PM	rtc_ampm_alarm		
		24-hour mode: not used			
Address: 70 Description: Real-Time Clock Alarm					
Bits	Range	Action	Parameter Name		
5:0	$1 . .31$	Day of the month alarm setting	rtc_day_alarm(5:0)		
Address: 71 Description: Real-Time Clock Alarm					
Bits	Range	Action	Parameter Name		
4:0	$1 . .12$	Month alarm setting	rtc_months_alarm(4:0)		
Address: $\mathbf{7 2}$ Description: Real-Time Clock Alarm					
Bits	Range	Action	Parameter Name		
7:0	-	Year alarm setting	rtc_year_alarm(7:0)		
Address: 73Description: Real-Time Clock Current Time					
Bits	Range	Action	Parameter Name		
6:0	$0 . .59$	Seconds register	rtc_seconds(6:0)		
14:7	-	Not used	-		
15	0/1	Real-time clock busy (read only)	rtc_busy		
Address: 74 Description: Real-Time Clock Current Time					
Bits	Range	Action	Parameter Name		
6:0	$0 . .59$	Minutes register	rtc_minutes(6:0)		
14:7	-	Not used	-		
15	0/1	Real-time clock busy (read only)	rtc_busy		
Address: 75Description: Real-Time Clock Current Time (continued)					
Bits	Range	Action	Parameter Name		
5:0	$1 . .12$	Hour register, 12-hour mode	rtc_hours(5:0)		
	$0 . .23$	Hour register, 24-hour mode			
6	-	Not used	-		
7	0/1	12-hour mode: $0=\mathrm{AM}, 1=\mathrm{PM}$	rtc_ampm		
		24-hour mode: not used			
14:8	-	Not used	-		
15	0/1	Real-time clock busy (read only)	rtc_busy		
```Address: 76 \\ Description: Real-Time Clock Current Time```					
Bits	Range	Action	Parameter Name		
5:0	1.31	Day of month register	rtc_day(5:0)		
14:6	-	Not used	-		
15	0/1	Real-time clock busy (read only)	rtc_busy		

Table 24. Control Registers (continued)

Address: 77   Description: Real-Time Clock Current Time			
Bits	Range	Action	Parameter Name
4:0	$1 . .12$	Month register	rtc_month(4:0)
14:5	-	Not used	-
15	0/1	Real-time clock busy (read only)	rtc_busy
Address: 78   Description: Real-Time Clock Current Time			
Bits	Range	Action	Parameter Name
7:0	$0 . .99$	Year register	rtc_year(7:0)
14:8	-	Not used	-
15	0/1	Real-time clock busy (read only)	rtc_busy
Address: 79   Description: Real-Time Clock Current Time			
Bits	Range	Action	Parameter Name
2:0	$0 . .6$	Day of week	rtc_day_of_week(2:0)
14:3	-	Not used	-
15	0/1	Real-time clock busy (read only)	rtc_busy
Address: 80   Description: WAKEUP Configuration			
Bits	Range	Action	Parameter Name
11:0	$0 . .4095$	GPIO input edge select for WAKEUP	wakeup_gpio_edge(11:0)
Address: 81   Description: WAKEUP Configuration			
Bits	Range	Action	Parameter Name
11:0	$0 . .4095$	WAKEUP GPIO enable	wakeup_gpio_en(11:0)
Address: 82   Description: WAKEUP Configuration			
Bits	Range	Action	Parameter Name
15:0	$0 . .65535$	WAKEUP enable	wakeup_en(15:0)
Address: 83   Description: WAKEUP Status			
Bits	Range	Action	Parameter Name
15:0	$0 . .65535$	Register read: returns WAKEUP status   Register write: clears interrupt bit if 1 is written	wakeup_status(15:0)
Address: 84   Description: WAKEUP GPIO Status			
Bits	Range	Action	Parameter Name
11:0	$0 . .4095$	Register read: returns WAKEUP status   Register write: clears interrupt bit if 1 is written	wakeup_gpio_status(11:0)

## PACKAGING INFORMATION

Orderable Device	Status   (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan   (2)	Lead finish/ Ball material   (6)	MSL Peak Temp   (3)	Op Temp ( ${ }^{\circ} \mathrm{C}$ )	Device Marking   (4/5)	Samples
AFE8220IPZPQ1	ACTIVE	HTQFP	PZP	100	90	RoHS \& Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	AFE8220Q	Samples
AFE8220TPZPQ1	ACTIVE	HTQFP	PZP	100	90	RoHS \& Green	NIPDAU	Level-3-260C-168 HR	-40 to 105	AFE8220QT	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed $0.1 \%$ by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as " Pb -Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " $\sim$ " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

## TRAY



Chamfer on Tray corner indicates Pin 1 orientation of packed units.
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature ( ${ }^{\circ} \mathrm{C}$ )	L (mm)	$\begin{gathered} \text { W } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{KO} \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{CL} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { CW } \\ \text { (mm) } \end{gathered}$
AFE8220TPZPQ1	PZP	HTQFP	100	90	$6 \times 15$	150	315	135.9	7620	20.3	15.4	15.45



Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
PZP (S-PQFP-G100)
PowerPAD ${ }^{\text {TM }}$
PLASTIC
QUAD
FLATPACK


NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding
recommended board layout. This document is available at www.ti.com <http: //www.ti.com>.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MS-026
PZP (S-PQFP-G100) PowerPAD ${ }^{\text {TM }}$ PLASTIC QUAD FLATPACK

## THERMAL INFORMATION

This PowerPAD ${ }^{T M}$ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).
For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.
The exposed thermal pad dimensions for this package are shown in the following illustration.


Top View
Exposed Thermal Pad Dimensions

NOTE: A. All linear dimensions are in millimeters
B Tie strap features may not be present.
PowerPAD is a trademark of Texas Instruments

PZP (S-PQFP-G100)
PowerPAD ${ }^{\text {TM }}$ PLASTIC QUAD FLATPACK


NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com [http://www.ti.com](http://www.ti.com). Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a $50 \%$ volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments.

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated


[^0]:    Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
    PowerPAD is a trademark of Texas Instruments.
    SPI is a trademark of Motorola, Inc.
    I2C is a trademark of NXP Semiconductors.
    All other trademarks are the property of their respective owners.

