Data sheet acquired from Harris Semiconductor SCHS165E

High-Speed CMOS Logic 4-Bit Parallel Access Register

Features

- Asynchronous Master Reset
- J, \bar{K}, (D) Inputs to First Stage
- Fully Synchronous Serial or Parallel Data Transfer
- Shift Right and Parallel Load Capability
- Complementary Output From Last Stage
- Buffered Inputs
- Typical $f_{\mathrm{MAX}}=50 \mathrm{MHz}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Fanout (Over Temperature Range)
- Standard Outputs \qquad 10 LSTTL Loads
- Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range ... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
- 2V to 6V Operation
- High Noise Immunity: $\mathrm{N}_{\mathrm{IL}}=30 \%, \mathrm{~N}_{\mathrm{IH}}=30 \%$ of V_{CC} at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Plnout

Description

The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial to parallel, or parallel to serial data transfers at very high speeds.

The two modes of operation, shift right $\left(Q_{0}-Q_{1}\right)$ and parallel load, are controlled by the state of the Parallel Enable ($\overline{\mathrm{PE}}$) input. Serial data enters the first flip-flop $\left(Q_{0}\right)$ via the J and \bar{K} inputs when the $\overline{P E}$ input is high, and is shifted one bit in the direction $Q_{0}-Q_{1}-Q_{2}-Q_{3}$ following each Low to High clock transition. The J and $\overline{\mathrm{K}}$ inputs provide the flexibility of the JKtype input for special applications and by tying the two pins together, the simple D-type input for general applications. The device appears as four common-clocked D flip-flops when the PE input is Low. After the Low to High clock transition, data on the parallel inputs (D0-D3) is transferred to the respective $Q_{0}-Q_{3}$ outputs. Shift left operation $\left(Q_{3}-Q_{2}\right)$ can be achieved by tying the Q_{n} outputs to the Dn-1 inputs and holding the $\overline{P E}$ input low.

All parallel and serial data transfers are synchronous, occurring after each Low to High clock transition. The 'HC195 series utilizes edge triggering; therefore, there is no restriction on the activity of the $\mathrm{J}, \overline{\mathrm{K}}, \mathrm{Pn}$ and $\overline{\mathrm{PE}}$ inputs for logic operations, other than set-up and hold time requirements. A Low on the asynchronous Master Reset (MR) input sets all Q outputs Low, independent of any other input condition.

Ordering Information

PART NUMBER	TEMP. RANGE ($\left.{ }^{\circ} \mathrm{C}\right)$	PACKAGE
CD54HC195F3A	-55 to 125	16 Ld CERDIP
CD74HC195E	-55 to 125	16 Ld PDIP
CD74HC195M	-55 to 125	16 Ld SOIC
CD74HC195NSR	-55 to 125	16 Ld SOP
CD74HC195PW	-55 to 125	16 Ld TSSOP
CD74HC195PWR	-55 to 125	16 Ld TSSOP
CD74HC195PWT	-55 to 125	16 Ld TSSOP

NOTE: When ordering, use the entire part number. The suffix R denotes tape and reel. The suffix T denotes a small-quantity reel of 250.

Functional Diagram

$Q_{0} Q_{1} Q_{2} Q_{3}$

TRUTH TABLE

OPERATING MODES	INPUTS						OUTPUT				
	$\overline{\text { MR }}$	CP	$\overline{\text { PE }}$	J	$\overline{\mathrm{K}}$	Dn	Q_{0}	Q_{1}	Q_{2}	Q_{3}	\bar{Q}_{3}
Asynchronous Reset	L	X	X	X	X	X	L	L	L	L	H
Shift, Set First Stage	H	\uparrow	h	h	h	X	H	90	q_{1}	q_{2}	$\overline{\mathrm{q}}_{2}$
Shift, Reset First Stage	H	\uparrow	h	1	1	X	L	90	q_{1}	q_{2}	$\overline{\mathrm{q}}_{2}$
Shift, Toggle First Stage	H	\uparrow	h	h	1	X	90	90	q_{1}	q_{2}	$\overline{\mathrm{q}}_{2}$
Shift, Retain First Stage	H	\uparrow	h	1	h	X	90	90	q_{1}	q_{2}	$\overline{\mathrm{q}}_{2}$
Parallel Load	H	\uparrow	1	X	X	dn	d_{0}	d_{1}	d_{2}	d3	d2

$\mathrm{H}=$ High Voltage Level
L = Low Voltage Level,
X = Don't Care
$\uparrow=$ Transition from Low to High Level
I = Low Voltage Level One Set-up Time Prior to the Low to High Clock Transition
$\mathrm{h}=$ Low Voltage Level One Set-up Time prior to the High to Low Clock Transition,
$\mathrm{dn}\left(\mathrm{q}_{\mathrm{n}}\right)=$ Lower Case Letters Indicate the State of the Referenced Input (or output) One Set-up Time Prior to the Low to High Clock
Transition.

Absolute Maximum Ratings	
DC Supply Voltage, V_{CC}	-0.5V to 7V
DC Input Diode Current, $\mathrm{I}_{1 / \mathrm{K}}$	
For $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.	$\pm 20 \mathrm{~mA}$
DC Output Diode Current, IOK	
For $\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$
DC Output Source or Sink Current per Output Pin, I_{O}	
For $\mathrm{V}_{\mathrm{O}}>-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 25 \mathrm{~mA}$
DC V_{CC} or Ground Current, $\mathrm{I}_{\text {CC }}$ or $\mathrm{I}_{\text {GND }}$	$\pm 50 \mathrm{~mA}$

Operating Conditions

Temperature Range (T_{A}) . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Supply Voltage Range, V_{CC}
HC Types . 2 V to 6 V

HCT Types . 4.5 V to 5.5 V
DC Input or Output Voltage, $\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}} \ldots \ldots \mathrm{OV}$ to V_{CC}
Input Rise and Fall Time
2V . 5 5000ns (Max)
4.5V. 400 ns (Max)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	10 (mA)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
High Level Input Voltage	V_{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
Low Level Input Voltage	$\mathrm{V}_{\text {IL }}$	-	-	2	-	-	0.5	-	0.5	-	0.5	V
				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output Voltage CMOS Loads	V_{OH}	V_{IH} or V_{IL}	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output Voltage TTL Loads			-	-	-	-	-	-	-	-	-	V
			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
Low Level Output Voltage CMOS Loads	V_{OL}	V_{IH} or V_{IL}	0.02	2	-	-	0.1	-	0.1	-	0.1	V
			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			-	-	-	-	-	-	-	-	-	V
			4	4.5	-	-	0.26	-	0.33	-	0.4	V
			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	I	V_{CC} or GND	-	6	-	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
Quiescent Device Current	ICC	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	0	6	-	-	8	-	80	-	160	$\mu \mathrm{A}$

Prerequisite For Switching Function

PARAMETER	SYMBOL	TEST CONDITIONS	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$25^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
				MIN	MAX	MIN	MAX	MIN	MAX	
Clock Frequency	$\mathrm{f}_{\text {MAX }}$	-	2	6	-	5	-	4	-	MHz
			4.5	30	-	25	-	20	-	MHz
			6	35	-	29	-	23	-	MHz
$\overline{\text { MR Pulse Width }}$	t_{w}	-	2	80	-	100	-	120	-	ns
			4.5	16	-	20	-	24	-	ns
			6	14	-	17	-	20	-	ns
Clock Pulse Width	t_{w}	-	2	80	-	100	-	120	-	ns
			4.5	16	-	20	-	24	-	ns
			6	14	-	17	-	20	-	ns
Set-up Time J, K, PE to Clock	tsu	-	2	100	-	125	-	150	-	ns
			4.5	20	-	25	-	30	-	ns
			6	17	-	21	-	26	-	ns
Hold Time J, $\bar{K}, \overline{\text { PE }}$ to Clock	${ }_{\text {t }}$	-	2	3	-	3	-	3	-	ns
			4.5	3	-	3	-	3	-	ns
			6	5	-	3	-	3	-	ns
Removal Time, MR to Clock	$t_{\text {REM }}$	-	2	80	-	100	-	120	-	ns
			4.5	16	-	20	-	24	-	ns
			6	14	-	17	-	20	-	ns

Switching Specifications Input $t_{r}, t_{f}=6 n s$

PARAMETER	SYMBOL	TEST CONDITIONS	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$25^{\circ} \mathrm{C}$		$\begin{array}{\|c} \hline-40^{\circ} \mathrm{C} \text { TO } 85^{\circ} \mathrm{C} \\ \hline \text { MAX } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline-55^{\circ} \mathrm{C} \text { TO } 125^{\circ} \mathrm{C} \\ \hline \text { MAX } \\ \hline \end{array}$	UNITS
				TYP	MAX			
HC TYPES								
Propagation Delay, CP to Output	$t_{\text {PLH }}$, tPHL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	175	220	265	ns
			4.5	-	35	44	53	ns
			6	-	30	37	45	ns
Propagation Delay, $\overline{\mathrm{MR}}$ toOutput	$t_{\text {PLH }}$, tPHL	$C_{L}=50 \mathrm{pF}$	2	-	150	190	225	ns
			4.5	-	30	38	45	ns
			6	-	26	33	38	ns
Output Transition Times (Figure 1)	${ }_{\text {t }}^{\text {LLH, }}$, tTHL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	75	95	110	ns
			4.5	-	15	19	22	ns
			6	-	13	16	19	ns
Input Capacitance	$\mathrm{C}_{\text {IN }}$	-	-	-	10	10	10	pF
CP to Q_{n} Propagation Delay	$t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	14	-	-	-	ns
$\overline{\mathrm{MR}}$ to Q_{n}	$\mathrm{t}_{\text {PHL }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	13	-	-	-	ns
Maximum Clock Frequency	$\mathrm{f}_{\text {MAX }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	50	-	-	-	MHz
Power Dissipation Capacitance (Notes 2, 3)	$\mathrm{CPD}^{\text {P }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		45	-	-	-	pF

NOTES:

2. $C_{P D}$ is used to determine the dynamic power consumption, per flip-flop.
3. $P_{D}=V_{C C}{ }^{2} f_{i}+\sum\left(C_{L} V_{C C}{ }^{2}+f_{O}\right)$ where $f_{i}=$ Input Frequency, $f_{O}=$ Output Frequency, $C_{L}=$ Output Load Capacitance, $V_{C C}=$ Supply Voltage.

Test Circuit and Waveforms

FIGURE 1. CLOCK PREREQUISITE AND PROPAGATION DELAYS AND OUTPUT TRANSITION TIMES

FIGURE 2. MASTER RESET PREREQUISITE AND PROPAGATION DELAYS

FIGURE 3. J, \bar{K}, OR PARALLEL ENABLE PREREQUISITE TIMES

INSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
CD74HC195E	ACTIVE	PDIP	N	16	25	RoHS \& Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC195E	Samples
CD74HC195M	ACTIVE	SOIC	D	16	40	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC195M	Samples
CD74HC195M96	ACTIVE	SOIC	D	16	2500	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC195M	Samples
CD74HC195NSR	ACTIVE	SO	NS	16	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC195M	Samples
CD74HC195PW	ACTIVE	TSSOP	PW	16	90	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ195	Samples
CD74HC195PWR	ACTIVE	TSSOP	PW	16	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ195	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

Reel Width (W1)
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
CD74HC195M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC195NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD74HC195PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC195M96	SOIC	D	16	2500	340.5	336.1	32.0
CD74HC195NSR	SO	NS	16	2000	356.0	356.0	35.0
CD74HC195PWR	TSSOP	PW	16	2000	356.0	356.0	35.0

TUBE

- B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T ($\boldsymbol{\mu m}$)	B (mm)
CD74HC195E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC195E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC195M	D	SOIC	16	40	507	8	3940	4.32
CD74HC195PW	PW	TSSOP	16	90	530	10.2	3600	3.5

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm , per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm , per side.

NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:7X

NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G16)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $0.006(0,15)$ each side.
D Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side.
E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

