

CDCLVP111

SCAS859F - JANUARY 2009 - REVISED JUNE 2015

CDCLVP111 Low-Voltage 1:10 LVPECL With Selectable Input Clock Driver

Features

- Distributes One Differential Clock Input Pair LVPECL to 10 Differential LVPECL
- Fully Compatible With LVECL and LVPECL
- Supports a Wide Supply Voltage Range from 2.375 V to 3.8 V
- Selectable Clock Input Through CLK SEL
- Low-Output Skew (Typical 15 ps) for Clock-**Distribution Applications**
 - Additive Jitter Less Than 1 ps
 - Propagation Delay Less Than 350 ps
 - Open Input Default State
 - LVDS, CML, SSTL Input Compatible
- V_{BB} Reference Voltage Output for Single-Ended Clocking
- Available in a 32-Pin LQFP and QFN Package
- Frequency Range From DC to 3.5 GHz
- Pin-to-Pin Compatible With MC100 Series EP111, ES6111, LVEP111, PTN1111

Applications

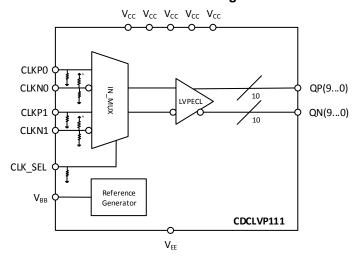
- Designed for Driving 50-Ω Transmission Lines
- High Performance Clock Distribution

3 Description

The CDCLVP111 clock driver distributes one differential clock pair of LVPECL input, (CLK0, CLK1) to ten pairs of differential LVPECL clock (Q0, Q9) outputs with minimum skew for clock distribution. The CDCLVP111 can accept two clock sources into an input multiplexer. The CDCLVP111 is specifically designed for driving $50-\Omega$ transmission lines. When an output pin is not used, leaving it open is recommended to reduce power consumption. If only one of the output pins from a differential pair is used, the other output pin must be identically terminated to

The V_{BB} reference voltage output is used if singleended input operation is required. In this case, the V_{BB} pin should be connected to CLKO and bypassed to GND through a 10-nF capacitor.

However, for high-speed performance up to 3.5 GHz, the differential mode is strongly recommended.


CDCLVP111 device is characterized operation from -40°C to 85°C.

Device Information⁽¹⁾

PART NUMBER PACKAGE		BODY SIZE (NOM)
CDCLVP111	VQFN (32)	5.00 mm × 5.00 mm
	LQFP (32)	7.00 mm × 7.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Functional Block Diagram

Table of Contents

1	Features 1		8.3 Feature Description	11
2	Applications 1		8.4 Device Functional Modes	12
3	Description 1	9	Applications and Implementation	13
4	Revision History2		9.1 Application Information	13
5	Pin Configuration and Functions 4		9.2 Typical Application	13
6	Specifications5	10	Power Supply Recommendations	18
U	6.1 Absolute Maximum Ratings		10.1 Power-Supply Filtering	18
	6.2 ESD Ratings	11	Layout	19
	6.3 Recommended Operating Conditions		11.1 Layout Guidelines	
	6.4 Thermal Information		11.2 Layout Example	
	6.5 DC Electrical Characteristics, LVECL		11.3 Thermal Management	
	6.6 DC Electrical Characteristics, LVPECL	12	Device and Documentation Support	20
	6.7 AC Electrical Characteristics		12.1 Documentation Support	
	6.8 Typical Characteristics		12.2 Community Resources	
7	Parameter Measurement Information9		12.3 Trademarks	20
•	7.1 Test Configurations		12.4 Electrostatic Discharge Caution	20
8	Detailed Description		12.5 Glossary	
U	8.1 Overview	13	Mechanical, Packaging, and Orderable	
	8.2 Functional Block Diagram		Information	20
	- · · · · · · · · · · · · · · · · · · ·			

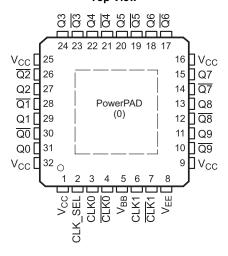
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	nanges from Revision E (July 2011) to Revision F	Page
•	Added Device Information Table, Pin Configuration and Functions; Specifications; Applications and Implementation; Detailed Description; Layout, Device and Documentation Support, Mechanical, Packaging, and Ordering Information	
<u>.</u>	Added extended frequency range from 1GHz down to 100MHz	8
Cŀ	nanges from Revision D (March 2010) to Revision E	Page
•	Changed the PowerPAD Pin Function Description	4
Cł	nanges from Revision C (November 2009) to Revision D	Page
•	Deleted duplicate information covering the PowerPAD from Note 1 of the Pin Functions table	
•	Changed the PowerPAD description in the PIN FUNCTIONS table to include the LQFP package information	5
•	Added "NOTE" at the beginning of "Applications and Implementation" section	13
<u>•</u>	Changed JEDEC symbol to R _{0JA}	19
Cŀ	nanges from Revision B (April 2009) to Revision C	Page
•	Changed PowerPAD information to the Pinout Package	4
•	Added PowerPAD information to the Pin Functions table	4
Cŀ	nanges from Revision A (March 2009) to Revision B	Page

Submit Documentation Feedback

Copyright © 2009–2015, Texas Instruments Incorporated



CI	hanges from Original (January 2009) to Revision A	Page
•	Changed note referneces within the AC ELECTRICAL CHARACTERISTICS table	7
•	Added a Typ value of 0.04ps to the Additive phase jitter in the AC ELECTRICAL CHARACTERISTICS	7

5 Pin Configuration and Functions

RHB, VF, or VFP Package 32-Pin VQFN, LQFP, or HLQFP **Top View**

Pin Functions (1)

PII	N				
NAME	AME NO.		DESCRIPTION		
CLK_SEL	2	Input	Clock select. Used to select between CLK0 and CLK1 input pairs. LVTTL/LVCMOS functionality compatible.		
CLK0, CLK0	3				
	4	Input	Differential LVECL/LVPECL input pair		
	6	Input	Differential EVEODEVI EOE input pail		
	7				
	11				
	13				
	15		LVECL/LVPECL clock outputs, these outputs provide low-skew copies of CLKn.		
	18	Output			
Q [9:0]	20				
Q [0.0]	22		EVENUE TO SHOULD SHOULD SHOULD FINANCIAL FOR SHOULD BE SHOULD SHO		
	24				
	27				
	29				
	31				
	10				
	12				
	14				
	17				
Q[9:0]	19	Output	LVECL/LVPECL complementary clock outputs, these outputs provide copies of CLKn.		
α [σ.σ]	21	Output	24202241 202 outspicification outputs, those outputs provide copies of ocivit.		
	23				
	26				
	28				
	30				
V_{BB}	5	_	Reference voltage output for single-ended input operation		

CLKn, CLK_SEL pulldown resistor = 75 kΩ; CLKn pullup resistor = 37.5 kΩ; CLKn pulldown resistor = 50 kΩ. (1)

Pin Functions⁽¹⁾ (continued)

PII	N	TVDE	DESCRIPTION	
NAME	NO.	TYPE	DESCRIPTION	
	1			
V _{cc}	9		Supply voltage	
	16	Power		
	25			
	32			
V _{EE}	8	Ground	Device ground or negative supply voltage in ECL mode	
PowerPAD™			The PowerPAD of the QFN32 is thermally connected to the die to improve the heat transfer out of the package. The pad of the QFN32 with PowerPAD must be connected to V _{EE} .	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
V_{CC}	Supply voltage (Relative to V _{EE})	-0.3	4.6	V
V_{I}	Input voltage	-0.3	$V_{CC} + 0.5$	V
Vo	Output voltage	-0.3	$V_{CC} + 0.5$	V
I _{IN}	Input current		±20	mA
V _{EE}	Negative supply voltage (Relative to V _{CC})	-4.6	0.3	V
I_{BB}	Sink/source current	-1	1	mA
Io	DC output current		– 50	mA
TJ	Maximum operating junction temperature		125	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	3000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	1500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage (relative to V _{EE})	2.375	2.5/3.3	3.8	V
T _A	Operating free-air temperature	-40		85	°C/W
T_{J}	Operating junction temperature			110	°C

Copyright © 2009–2015, Texas Instruments Incorporated

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

		CDCLVP111		
	THERMAL METRIC ⁽¹⁾	RHB (VQFN)	VF (LQFP)	UNIT
		32 F		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	45.2	85.1	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	37.5	23.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	17.9	49.4	°C/W
ΨЈТ	Junction-to-top characterization parameter	1.5	0.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	17.9	48.7	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	9.7	_	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 DC Electrical Characteristics, LVECL

Vsupply: $V_{CC} = 0 \text{ V}$, $V_{EE} = -2.375 \text{ V}$ to -3.8 V over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
I _{EE}	Supply internal current	Absolute value of current	–40°C, 25°C, 85°C	40		85	mA
			-40°C			354	
I_{CC}	Output and internal supply current	All outputs terminated 50 Ω to $V_{CC}-2\ V$	25°C			380	mA
			85°C			405	
I _{IN}	Input current	Includes pullup/pulldown resistors, $V_{IH} = V_{CC}$, $V_{IL} = V_{CC}$ - 2 V	–40°C, 25°C, 85°C	-150		150	μΑ
\ <u>\</u>	Internally generated	For $V_{EE} = -3$ to -3.8 V, $I_{BB} = -0.2$ mA	–40°C, 25°C, 85°C	-1.45	-1.3	-1.15	V
V _{BB}	bias voltage	$V_{EE} = -2.375 \text{ to } -2.75 \text{ V},$ $I_{BB} = -0.2 \text{ mA}$	–40°C, 25°C, 85°C	-1.4	-1.25	-1.1	V
V_{IH}	High-level input voltage (CLK_SEL)		–40°C, 25°C, 85°C	-1.165		-0.88	V
V_{IL}	Low-level input voltage (CLK_SEL)		–40°C, 25°C, 85°C	-1.81		-1.475	V
V_{ID}	Input amplitude (CLKn, CLKn)	Difference of input, see $^{(1)}$ $\left V_{IH}-V_{IL}\right $	–40°C, 25°C, 85°C	0.5		1.3	V
V_{CM}	Common-mode voltage (CLKn, CLKn)	DC offset relative to V _{EE}	–40°C, 25°C, 85°C	V _{EE} + 1		-0.3	V
			–40°C	-1.26		-0.85	
V_{OH}	High-level output voltage	I _{OH} = -21 mA	25°C	-1.2		-0.85	V
			85°C	-1.15		-0.85	
			–40°C	-1.85		-1.5	
V_{OL}	Low-level output voltage	$I_{OL} = -5 \text{ mA}$	25°C	-1.85		-1.45	V
	J -		85°C	-1.85		-1.4	
V _{OD}	Differential output voltage swing	Terminated with 50 Ω to V_{CC} -2 V, see Figure 5	–40°C, 25°C, 85°C	600			mV

⁽¹⁾ V_{ID} minimum and maximum is required to maintain ac specifications, actual device function tolerates a minimum V_{ID} of 100 mV.

Submit Documentation Feedback

Copyright © 2009–2015, Texas Instruments Incorporated

6.6 DC Electrical Characteristics, LVPECL

Vsupply: V_{CC} = 2.375 V to 3.8 V, V_{EE}= 0 V over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
I _{EE}	Supply internal current	Absolute value of current	–40°C, 25°C, 85°C	40		85	mA
			-40°C			354	
I_{CC}	Output and internal supply current	All outputs terminated 50 Ω to V_{CC} – 2 V	25°C			380	mA
	cupply culton		85°C			405	
I _{IN}	Input current	Includes pullup/pulldown resistors V _{IH} =V _{CC} , V _{IL} = V _{CC} -2V	-40°C, 25°C, 85°C	-150		150	μA
	Internally generated	$V_{CC} = 3$ to 3.8 V, $I_{BB} = -0.2$ mA	–40°C, 25°C, 85°C	$V_{CC} - 1.45$	$V_{CC} - 1.3$	V _{CC} – 1.15	
V _{BB}	Internally generated bias voltage	V_{CC} = 2.375 to 2.75 V, I_{BB} = -0.2 mA	–40°C, 25°C, 85°C	V _{CC} - 1.4	V _{CC} – 1.25	V _{CC} - 1.1	V
V _{IH}	High-level input voltage (CLK_SEL)		–40°C, 25°C, 85°C	V _{CC} – 1.165		V _{CC} - 0.88	V
V _{IL}	Low-level input voltage (CLK_SEL)		–40°C, 25°C, 85°C	V _{CC} - 1.81		V _{CC} – 1.475	V
V _{ID}	Input amplitude (CLKn, CLKn)	Difference of inpu, see $^{(1)}$, $\left V_{IH}-V_{IL}\right $	-40°C, 25°C, 85°C	0.5		1.3	V
V _{CM}	Common-mode voltage (CLKn, CLKn)	DC offset relative to V _{EE}	–40°C, 25°C, 85°C	1		V _{CC} - 0.3	V
			–40°C	V _{CC} - 1.26		V _{CC} - 0.85	
V_{OH}	High-level output voltage	$I_{OH} = -21 \text{ mA}$	25°C	$V_{CC} - 1.2$		$V_{CC} - 0.85$	V
			85°C	V _{CC} - 1.15		$V_{CC} - 0.85$	
			–40°C	V _{CC} - 1.85		V _{CC} – 1.5	
V_{OL}	Low-level output voltage	$I_{OL} = -5 \text{ mA}$	25°C	V _{CC} - 1.85		V _{CC} - 1.45	V
	J -		85°C	V _{CC} - 1.85		V _{CC} - 1.4	
V _{OD}	Differential output voltage swing	Terminated with 50 Ω to V _{CC} - 2 V, see Figure 5	–40°C, 25°C, 85°C	600			mV

⁽¹⁾ V_{ID} minimum and maximum is required to maintain ac specifications, actual device function tolerates a minimum V_{ID} of 100 mV.

6.7 AC Electrical Characteristics

Vsupply: V_{CC} = 2.375 V to 3.8 V, V_{EE} = 0 V or LVECL/LVPECL input V_{CC} = 0 V, V_{EE} = -2.375 V to -3.8 V over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{pd}	Differential propagation delay CLKn, CLKn to all Q0, Q0 Q9, Q9	See Note D in Figure 2	200		350	ps
t _{sk(o)}	Output-to-output skew	See Note A in Figure 2		15	30	ps
t _{sk(pp)}	Part-to-part skew	See Note B in Figure 2			70	ps
t _{aj}	Additive phase jitter	Integration bandwidth of 20 kHz to 20 MHz, fout = 125 MHz at 25°C		0.04	< 0.8	ps
f _(max)	Maximum frequency	Functional up to 3.5 GHz			3500	MHz
t _r /t _f	Output rise and fall time (20%, 80%)	See Note D in Figure 2	90		200	ps

Product Folder Links: CDCLVP111

TEXAS INSTRUMENTS

6.8 Typical Characteristics

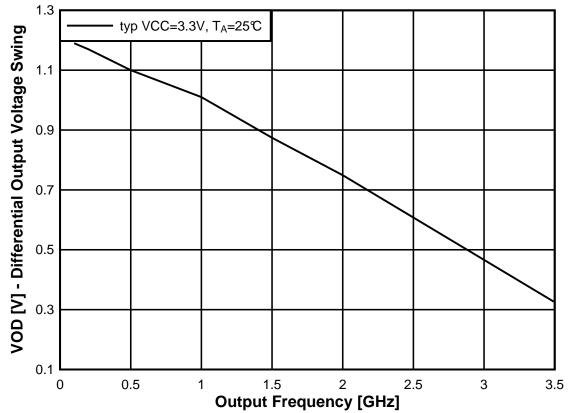


Figure 1. LVPECL Input Using CLK0 Pair, $V_{CM} = 1 \text{ V}$, $V_{ID} = 0.5 \text{ V}$

7 Parameter Measurement Information

7.1 Test Configurations

- A. Output skew is calculated as the greater of: The difference between the fastest and the slowest t_{PLHn} (n = 0, 1,...9) or the difference between the fastest and the slowest t_{PHLn} (n = 0, 1,...9).
- B. Part-to-part skew, is calculated as the greater of: The difference between the fastest and the slowest t_{PLHn} (n = 0, 1,...9) across multiple devices or the difference between the fastest and the slowest t_{PHLn} (n = 0, 1,...9) across multiple devices.
- C. Typical value measured at ambient when clock input is 155.52 MHz for an integration bandwidth of 20 kHz to 5 MHz.
- D. Input conditions: $V_{CM} = 1 \text{ V}$, $V_{ID} = 0.5 \text{ V}$ and $F_{IN} = 1 \text{ GHz}$.

Figure 2. Waveform for Calculating Both Output and Part-to-Part Skew

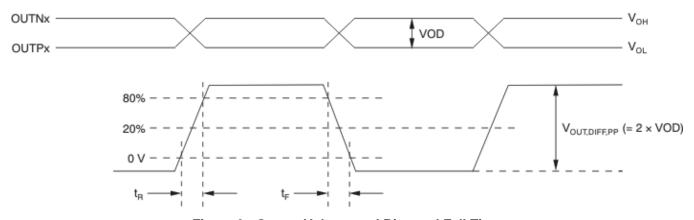


Figure 3. Output Voltage and Rise and Fall Time

Copyright © 2009–2015, Texas Instruments Incorporated

Test Configurations (continued)

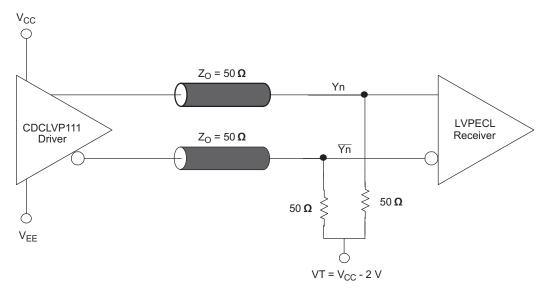


Figure 4. Typical Termination for Output Driver (See the Interfacing Between LVPECL, LVDS, and CML Application Note, SCAA056)

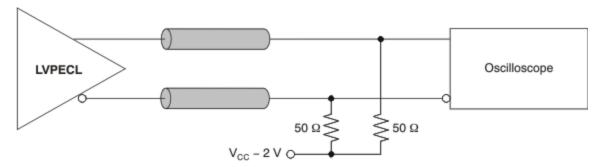


Figure 5. LVPECL Output DC Configuration During Device Test

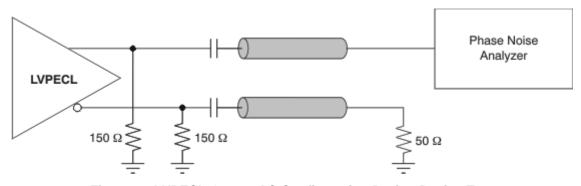
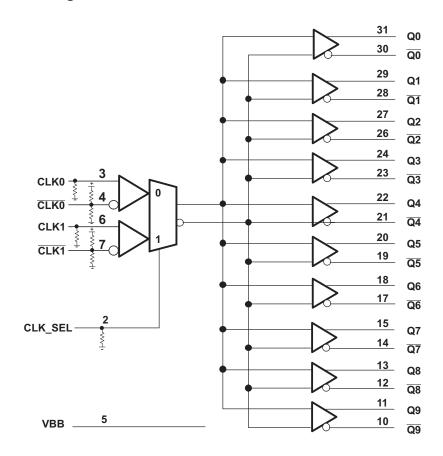


Figure 6. LVPECL Output AC Configuration During Device Test



8 Detailed Description

8.1 Overview

The CDCLVP111 is an open emitter for LVPECL outputs. Therefore, proper biasing and termination are required to ensure correct operation of the device and to minimize signal integrity. The proper termination for LVPECL outputs is a 50 Ω to (V_{CC} -2) V, but this DC voltage is not readily available on PCB. Therefore, a Thevenin equivalent circuit is worked out for the LVPECL termination in both direct-coupled (DC) and AC-coupled configurations. These configurations are shown in Figure 8 (a and b) for V_{CC} = 2.5 V and Figure 9 (a and b) for V_{CC} = 3.3 V, respectively. TI recommends to place all resistive components close to either the driver end or the receiver end. If the supply voltage for the driver and receiver is different, AC coupling is required.

8.2 Functional Block Diagram

8.3 Feature Description

The CDCLVP111 is a low-additive jitter universal to LVPECL fan out buffer with 2 selectable inputs. The small package, low-output skew, and low-additive jitter make for a flexible device in demanding applications.

Copyright © 2009–2015, Texas Instruments Incorporated

8.4 Device Functional Modes

Select Input Terminal By CLK_SEL Pin

Table 1. Function Table

CLK_SEL	ACTIVE CLOCK INPUT
0	CLK0, CLK0
1	CLK1, CLK1

The two inputs of the CDCLVP111 are internally mixed together and can be selected through the control pin. Unused inputs and outputs can be left floating to reduce overall component cost. Both AC and DC coupling schemes can be used with the CDCLVP111 to provide greater system flexibility.

9 Applications and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The CDCLVP111 is a low-additive jitter LVPECL fanout buffer that can generate 5 copies of 2 selectable LVDS, CML or SSTL inputs. The CDCLVP111 can accept reference clock frequencies up to 3.5 GHz while providing low-output skew.

9.2 Typical Application

9.2.1 Fanout Buffer for Line Card Application

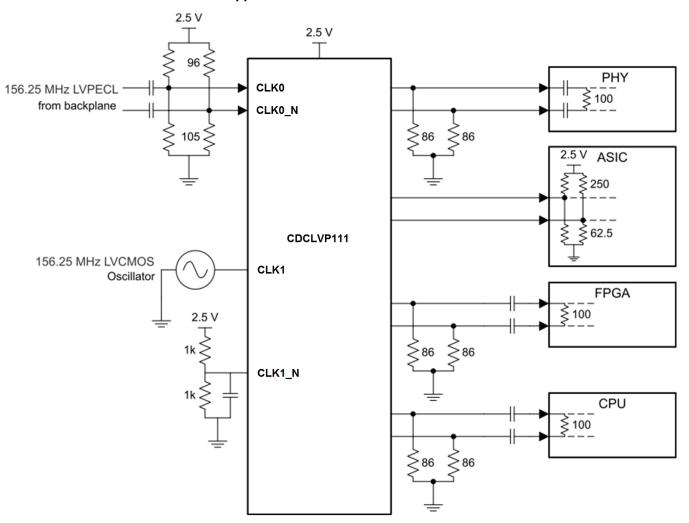


Figure 7. CDCLVP111 Block Diagram

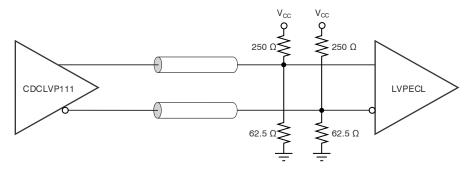
9.2.1.1 Design Requirements

The CDCLVP111 shown in Figure 7 is configured to be able to select 2 inputs, a 156.25-MHz LVPECL clock from the backplane, or a secondary 156.25-MHz LVCMOS 2.5-V oscillator. Either signal can be then fanned out to desired devices, as shown.

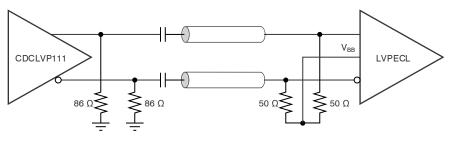
The configuration example is driving 4 LVPECL receivers in a line card application with the following properties:

- The PHY device has internal AC coupling and appropriate termination and biasing. The CDCLVP111 will need to be provided with 86-Ω emitter resistors near the driver for proper operation.
- The ASIC is capable of DC coupling with a 2.5-V LVPECL driver such as the CDCLVP111. This ASIC features internal termination so no additional components are needed.
- The FPGA requires external AC coupling but has internal termination. Again, 86-Ω emitter resistors are placed near the CDCLVP111 and a 0.1-uF are placed to provide AC coupling. Similarly, the CPU is internally terminated and requires external AC coupling capacitors.

9.2.1.2 Detailed Design Procedure


Unused outputs can be left floating.

In this example, the PHY, ASIC, and FPGA/CPU require different schemes. Power-supply filtering and bypassing is critical for low-noise applications.


See Figure 18 for recommended filtering techniques.

9.2.1.2.1 LVPECL Output Termination

Refer to Figure 8 for output termination schemes depending on the receiver application.

(a) Output DC Termination

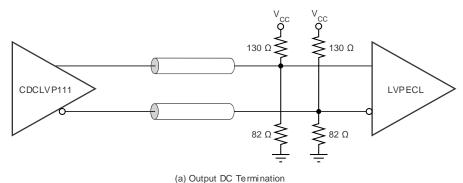

(b) Output AC Termination

Figure 8. LVPECL Output DC and AC Termination for $V_{CC} = 2.5 \text{ V}$

Submit Documentation Feedback

Copyright © 2009–2015, Texas Instruments Incorporated

(a) output 20 10111111ation

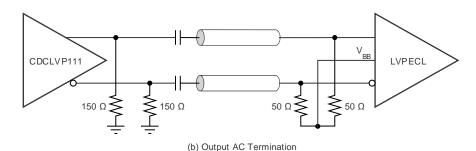


Figure 9. LVPECL Output DC and AC Termination for $V_{CC} = 3.3 \text{ V}$

9.2.1.2.2 Input Termination

The CDCLVP111 inputs can be interfaced with LVPECL, LVDS, or LVCMOS drivers. Figure 10 illustrates how to DC couple an LVCMOS input to the CDCLVP111. The series resistance (R_S) should be placed close to the LVCMOS driver; the value is calculated as the difference between the transmission line impedance and the driver output impedance.

Refer to Figure 10 for proper input terminations, dependent on single ended or differential inputs.

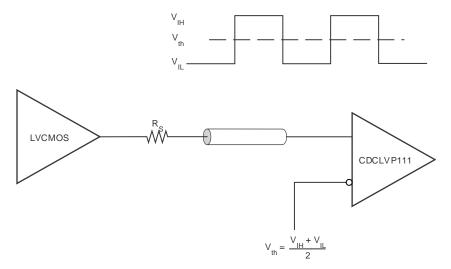


Figure 10. DC-Coupled LVCMOS Input to CDCLVP111

Copyright © 2009–2015, Texas Instruments Incorporated

Figure 11 shows how to DC couple LVDS inputs to the CDCLVP111. Figure 12 and Figure 13 describe the method of DC coupling LVPECL inputs to the CDCLVP111 for $V_{CC} = 2.5 \text{ V}$ and $V_{CC} = 3.3 \text{ V}$, respectively.

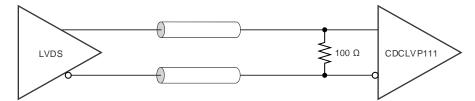


Figure 11. DC-Coupled LVDS Inputs to CDCLVP111

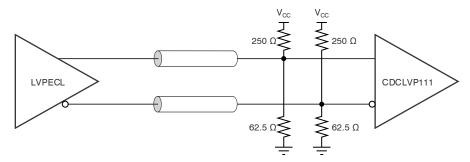


Figure 12. DC-Coupled LVPECL Inputs to CDCLVP111 ($V_{CC} = 2.5 \text{ V}$)

Figure 13. DC-Coupled LVPECL Inputs to CDCLVP111 ($V_{CC} = 3.3 \text{ V}$)

Figure 14 and Figure 15 show the technique of AC coupling differential inputs to the CDCLVP111 for $V_{CC} = 2.5 \text{ V}$ and $V_{CC} = 3.3 \text{ V}$, respectively. TI recommends to place all resistive components close to either the driver end or the receiver end. If the supply voltages of the driver and receiver are different, AC coupling is required.

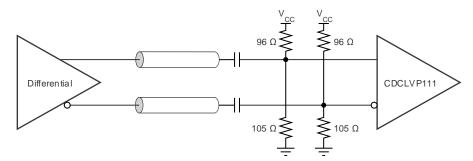


Figure 14. AC-Coupled Differential Inputs to CDCLVP111 (V_{CC} = 2.5 V)

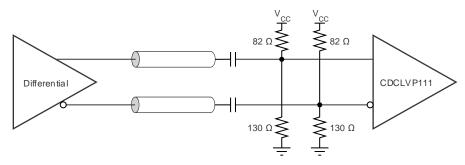
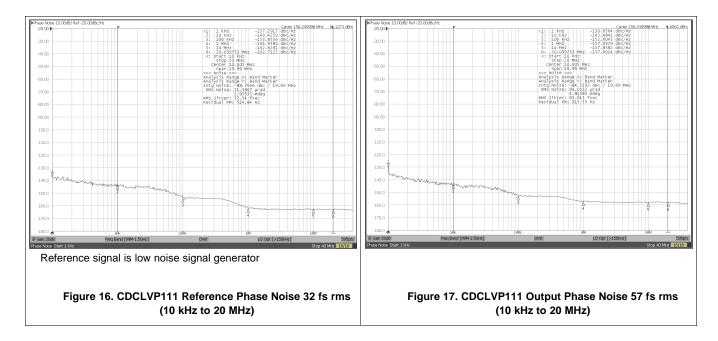



Figure 15. AC-Coupled Differential Inputs to CDCLVP111 ($V_{CC} = 3.3 \text{ V}$)

9.2.1.3 Application Curves

The CDCLVP111 low-additive noise can be shown in this line card application. The low-noise, 156.25-MHz signal with 53-fs RMS jitter drives the CDCLVP111, resulting in 86-fs RMS when integrated from 10 kHz to 20 MHz. The resultant-additive jitter is a low 68-fs RMS for this configuration.

10 Power Supply Recommendations

10.1 Power-Supply Filtering

High-performance clock buffers are sensitive to noise on the power supply, which can dramatically increase the additive jitter of the buffer. Thus, it is essential to reduce noise from the system power supply, especially when jitter and phase noise is very critical to applications.

Filter capacitors are used to eliminate the low-frequency noise from the power supply, where the bypass capacitors provide the very low-impedance path for high-frequency noise and guard the power-supply system against the induced fluctuations. These bypass capacitors also provide instantaneous current surges as required by the device and should have low equivalent series resistance (ESR). To properly use the bypass capacitors, they must be placed very close to the power-supply terminals and laid out with short loops to minimize inductance. TI recommends to add as many high-frequency (for example, 0.1-µF) bypass capacitors as there are supply terminals in the package. TI recommends, but does not require, to insert a ferrite bead between the board power supply and the chip power supply that isolates the high-frequency switching noises generated by the clock driver; these beads prevent the switching noise from leaking into the board supply. It is imperative to choose an appropriate ferrite bead with very low dc resistance to provide adequate isolation between the board supply and the chip supply, as well as to maintain a voltage at the supply terminals that is greater than the minimum voltage required for proper operation.

Figure 18 illustrates this recommended power-supply decoupling method.

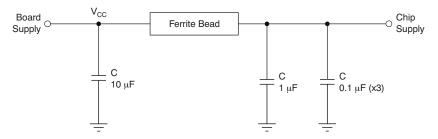


Figure 18. Power-Supply Decoupling

11 Layout

11.1 Layout Guidelines

Power consumption of the CDCLVP111 can be high enough to require attention to thermal management. For reliability and performance reasons, the die temperature should be limited to a maximum of +110°C. That is, as an estimate, ambient temperature (TA) plus device power consumption times R_{BJA} should not exceed +110°C.

The device package has an exposed pad that provides the primary heat removal path to the printed-circuit-board (PCB). To maximize the heat dissipation from the package, a thermal landing pattern including multiple vias to a ground plane must be incorporated into the PCB within the footprint of the package. The exposed pad must be soldered down to ensure adequate heat conduction out of the package. Figure 19 shows a recommended land and via pattern.

11.2 Layout Example

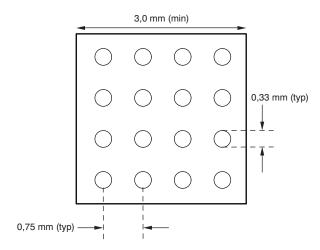


Figure 19. Recommended PCB Layout

11.3 Thermal Management

Power consumption of the CDCLVP111 can be high enough to require attention to thermal management. For reliability and performance reasons, the die temperature should be limited to a maximum of +110 $^{\circ}$ C. That is, as an estimate, ambient temperature (T_A) plus device power consumption times $R_{\theta JA}$ should not exceed +110 $^{\circ}$ C.

The device package has an exposed pad that provides the primary heat removal path to the printed-circuit-board (PCB). To maximize the heat dissipation from the package, a thermal landing pattern including multiple vias to a ground plane must be incorporated into the PCB within the footprint of the package. The exposed pad must be soldered down to ensure adequate heat conduction out of the package. Figure 19 shows a recommended land and via pattern.

Copyright © 2009–2015, Texas Instruments Incorporated Submit Docume

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following: Interfacing Between LVPECL, LVDS, and CML Application Note, SCAA056

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

PowerPAD, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CDCLVP111RHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LVP111	Samples
CDCLVP111RHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LVP111	Samples
CDCLVP111VF	ACTIVE	LQFP	VF	32	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CDCLVP111	Samples
CDCLVP111VFR	ACTIVE	LQFP	VF	32	1000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CDCLVP111	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

10-Dec-2020

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CDCLVP111:

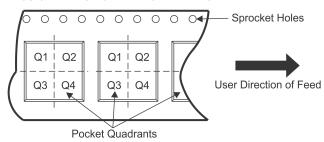
● Enhanced Product: CDCLVP111-EP

• Space: CDCLVP111-SP

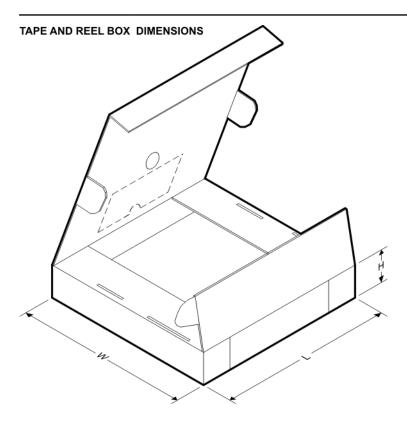
NOTE: Qualified Version Definitions:

- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

www.ti.com 5-Jan-2022


TAPE AND REEL INFORMATION

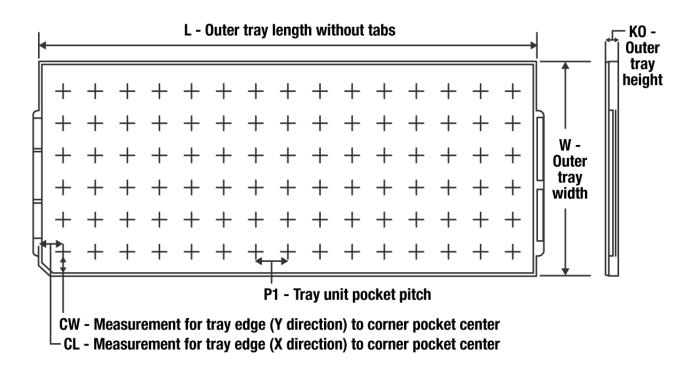
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device Device	Package Type	Package Drawing		SPQ	Reel Diameter	Reel Width	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
					(mm)	W1 (mm)						
CDCLVP111RHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
CDCLVP111VFR	LQFP	VF	32	1000	330.0	16.4	9.6	9.6	1.9	12.0	16.0	Q2

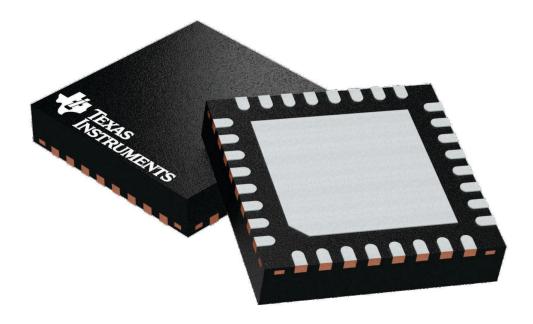
www.ti.com 5-Jan-2022


*All dimensions are nominal

Device	Package Type	Package Type Package Drawing		SPQ	Length (mm)	Width (mm)	Height (mm)	
CDCLVP111RHBR	VQFN	RHB	32	3000	350.0	350.0	43.0	
CDCLVP111VFR	LQFP	VF	32	1000	367.0	367.0	38.0	

www.ti.com 5-Jan-2022

TRAY

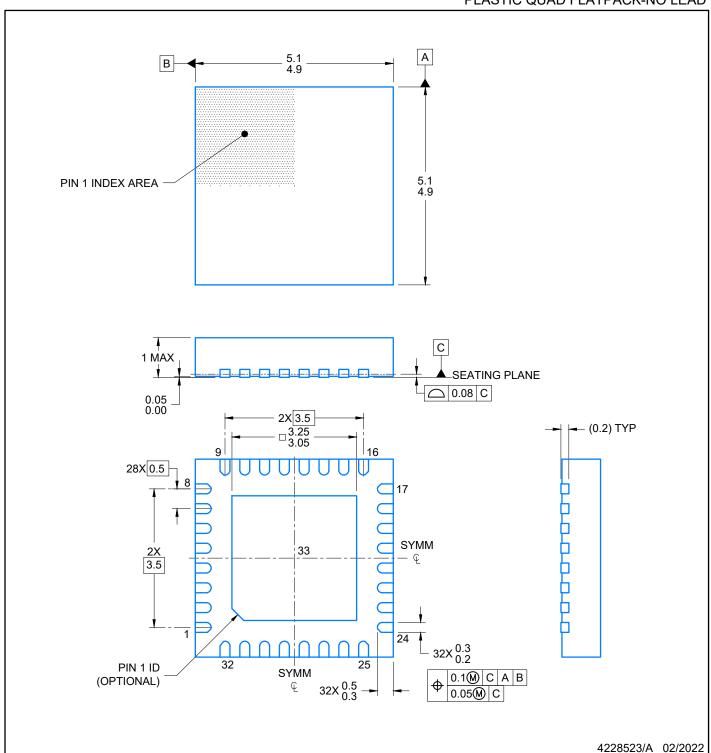

Chamfer on Tray corner indicates Pin 1 orientation of packed units.

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	Κ0 (μm)	P1 (mm)	CL (mm)	CW (mm)
CDCLVP111VF	VF	LQFP	32	250	10 x 25	150	315	135.9	7620	12.2	11.1	11.25

5 x 5, 0.5 mm pitch

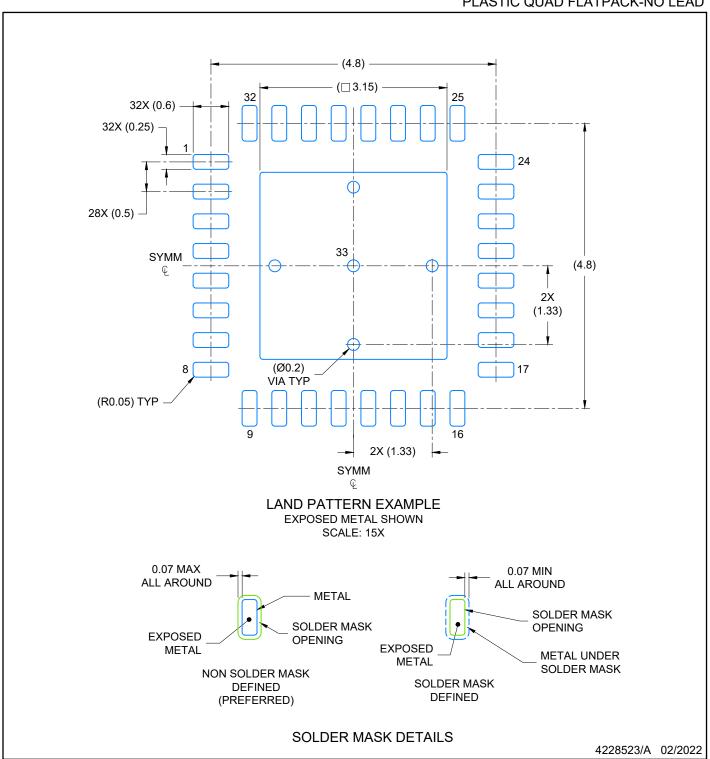
PLASTIC QUAD FLATPACK - NO LEAD



Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224745/A

PLASTIC QUAD FLATPACK-NO LEAD



NOTES:

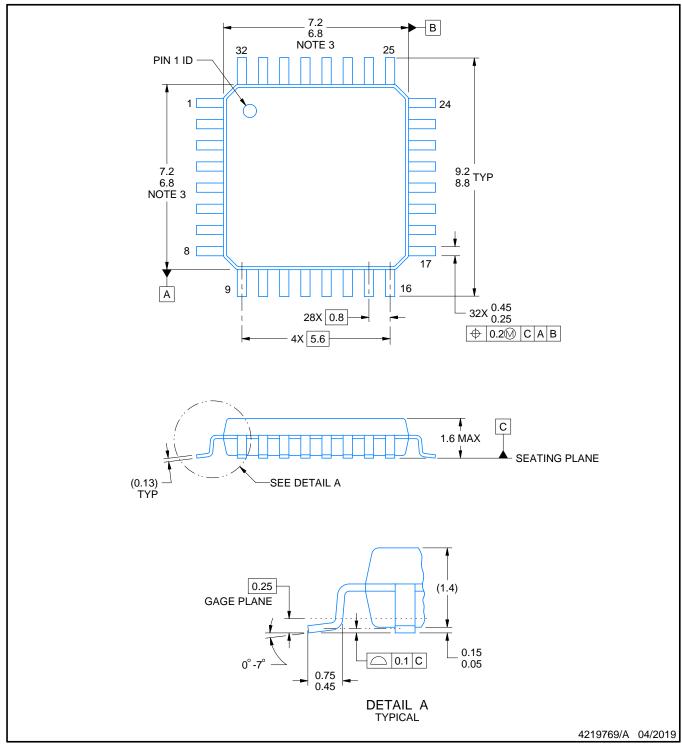
- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

PLASTIC QUAD FLATPACK-NO LEAD

NOTES: (continued)

- This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK-NO LEAD



NOTES: (continued)

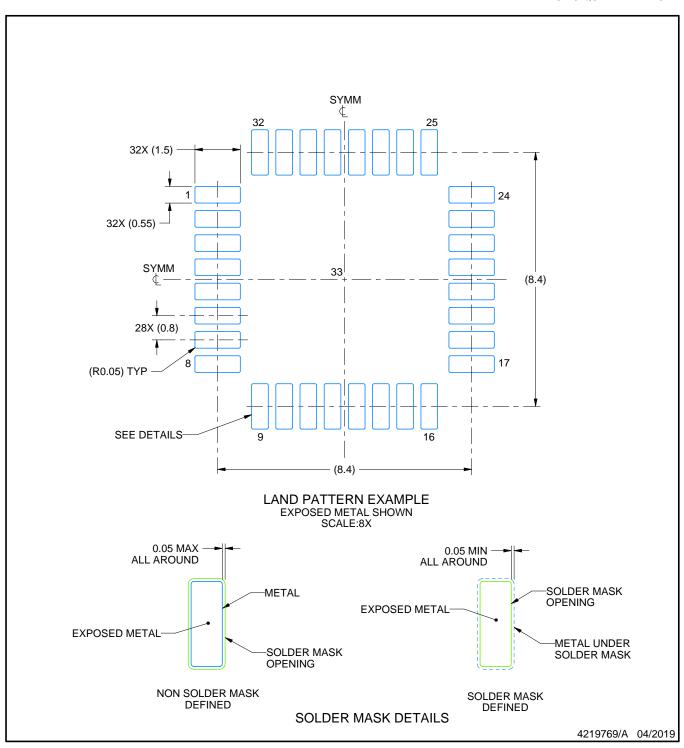
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

PLASTIC QUAD FLATPACK

NOTES:

PowerPAD is a trademark of Texas Instruments.

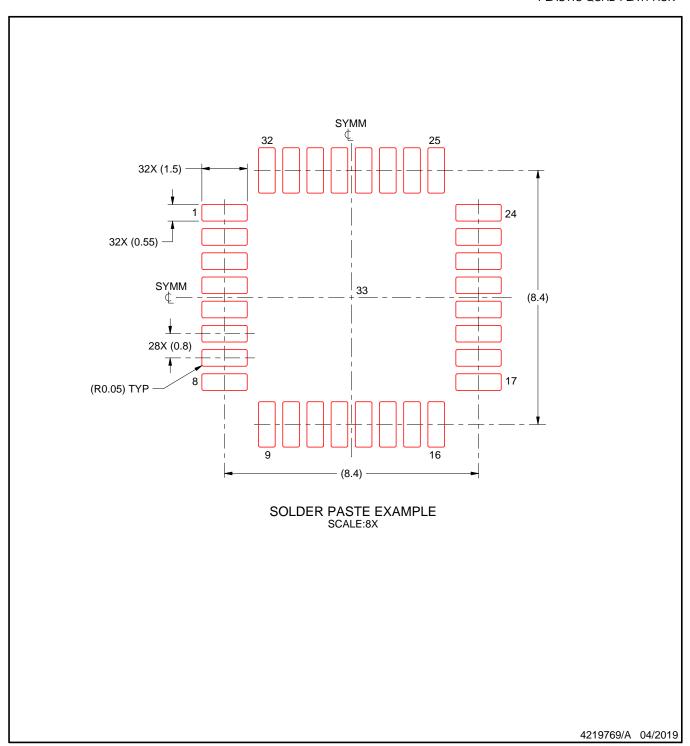
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs.

- 4. Reference JEDEC registration MS-026.

PLASTIC QUAD FLATPACK


NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

PLASTIC QUAD FLATPACK

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated