

DS91M125 125 MHz 1:4 M-LVDS Repeater with LVDS Input

Check for Samples: DS91M125

FEATURES

- DC 125 MHz / 250 Mbps Low Jitter, Low Skew, Low Power Operation
- Independent Driver Enable Pins
- Outputs Conform to TIA/EIA-899 M-LVDS Standard
- Controlled Transition Times Minimize Reflections
- Inputs Conform to TIA/EIA-644-A LVDS Standard
- 8 kV ESD on M-LVDS Output Pins Protects Adjoining Components
- Flow-Through Pinout Simplifies PCB Layout
- Industrial Operating Temperature Range (-40°C to +85°C)
- Available in a Space Saving SOIC-16 Package

APPLICATIONS

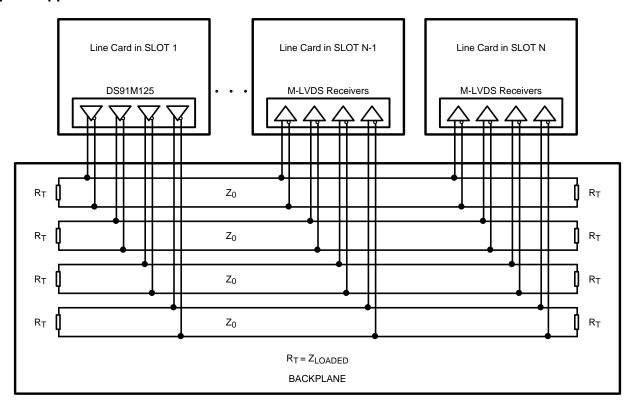
- Multidrop / Multipoint Clock and Data Distribution
- High-Speed, Low Power, Short-Reach Alternative to TIA/EIA-485/422
- Clock Distribution in AdvancedTCA (ATCA) and MicroTCA (μTCA, uTCA) Backplanes

DESCRIPTION

The DS91M125 is a 1:4 M-LVDS repeater designed for driving and distributing clock or data signals to up to four multipoint networks.

M-LVDS (Multipoint LVDS) is a new family of bus interface devices based on LVDS technology specifically designed for multipoint and multidrop cable and backplane applications. It differs from standard LVDS in providing increased drive current to handle double terminations that are required in multipoint applications. Controlled transition times minimize reflections that are common in multipoint configurations due to unterminated stubs.

A single DS91M125 channel is a 1:4 repeater that accepts M-LVDS/LVDS/CML/LVPECL signals and converts them to M-LVDS signal levels. Each output has an associated independent driver enable pin. The DS91M125 input conforms to the LVDS standard.


The DS91M125 has a flow-through pinout for easy PCB layout. It provides a new alternative for high speed multipoint interface applications. It is packaged in a space saving SOIC-16 package.

M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Typical Application

Connection Diagram

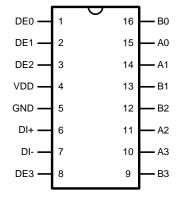
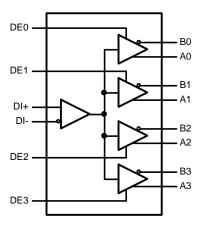



Figure 1. 16-Lead (0.150" Wide) Molded Small Outline Package, JEDEC See Package Number D

Logic Diagram

PIN DESCRIPTIONS

		-	D						
Number	Name	I/O, Type	Description						
1, 2, 3, 8	DE	I, LVCMOS	Driver enable pins: When DE is low, the driver is disabled. When DE is high, the driver is enabled. There is a 300 k Ω pulldown resistor on each pin.						
6	DI+	I, LVDS	Non-inverting receiver input pin.						
7	DI-	I, LVDS	Inverting receiver input pin.						
5	GND	Power	Ground pin.						
10, 11, 14, 15	Α	O, M-LVDS	Non-inverting driver output pin.						
9, 12, 13, 16	В	O, M-LVDS	Inverting driver output pin.						
4	V_{DD}	Power	Power supply pin, +3.3V ± 0.3V						

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS(1)(2)

Supply Voltage		-0.3V to +4V		
LVCMOS Input Voltages		-0.3V to (V _{DD} + 0.3V)		
M-LVDS Output Voltages		−1.9V to +5.5\		
LVDS Input Voltages		-0.3V to (V _{DD} + 0.3V)		
Maximum Package Power Dissipation at +25°C	SOIC Package	2.21W		
	Derate SOIC Package	19.2 mW/°C above +25°C		
Thermal Resistance (4-Layer, 2 oz. Cu, JEDEC)	θ_{JA}	52°C/W		
	θ_{JC}	19°C/W		
Maximum Junction Temperature		140°C		
Storage Temperature Range		−65°C to +150°C		
Lead Temperature (Soldering, 4 seconds)		260°C		
ESD Susceptibility	HBM ⁽³⁾	≥ 8 kV		
	MM ⁽⁴⁾	≥ 250V		
	CDM ⁽⁵⁾	≥ 1250V		

Absolute Maximum Ratings indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions.

- If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.
- Human Body Model, applicable std. JESD22-A114C Machine Model, applicable std. JESD22-A115-A
- Field Induced Charge Device Model, applicable std. JESD22-C101-C

RECOMMENDED OPERATING CONDITIONS

	Min	Тур	Max	Units
Supply Voltage, V _{DD}	3.0	3.3	3.6	V
Voltage at M-LVDS Outputs	-1.4		+3.8	V
Voltage at LVDS Inputs	0		V_{DD}	V
LVCMOS Input Voltage High V _{IH}	2.0		V_{DD}	V
LVCMOS Input Voltage Low V _{IL}	0		0.8	V
Operating Free Air Temperature T _A	-40	+25	+85	°C

ELECTRICAL CHARACTERISTICS

Over recommended operating supply and temperature ranges unless otherwise specified. (1)(2)(3)(4)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
LVCMOS E	OC Specifications					
V _{IH}	High-Level Input Voltage		2.0		V_{DD}	V
V _{IL}	Low-Level Input Voltage		GND		0.8	V
I _{IH}	High-Level Input Current	V _{IH} = 3.6V	-15	±1	15	μΑ
I _{IL}	Low-Level Input Current	V _{IL} = 0V	-15	±1	15	μA
V _{CL}	Input Clamp Voltage	I _{IN} = -18 mA	-1.5			V
M-LVDS D	river DC Specifications			•	-	
V _{AB}	Differential output voltage magnitude	$R_L = 50\Omega$, $C_L = 5pF$	480		650	mV
ΔV_{AB}	Change in differential output voltage magnitude between logic states	See Figure 2and Figure 4	-50	0	+50	mV
V _{OS(SS)}	Steady-state common-mode output voltage	$R_L = 50\Omega$, $C_L = 5pF$	0.3	1.6	2.1	V
$ \Delta V_{OS(SS)} $	Change in steady-state common-mode output voltage between logic states	See Figure 2 and Figure 3	0		+50	mV
V _{A(OC)}	Maximum steady-state open-circuit output voltage	See Figure 5	0		2.4	V
V _{B(OC)}	Maximum steady-state open-circuit output voltage		0		2.4	V
V _{P(H)}	Voltage overshoot, low-to-high level output	$R_L = 50\Omega$, $C_L = 5pF$, $C_D = 0.5pF$ See Figure 7 and Figure 8			1.2V _{SS}	V
V _{P(L)}	Voltage overshoot, high-to-low level output		-0.2V			V
I _{OS}	Differential short-circuit output current	See Figure 6 (6)	-43		43	mA
I _A	Driver output current	$V_A = 3.8V, V_B = 1.2V$			32	μA
		V _A = 0V or 2.4V, V _B = 1.2V	-20		+20	μA
		$V_A = -1.4V, V_B = 1.2V$	-32			μA
I _B	Driver output current	V _B = 3.8V, V _A = 1.2V			32	μA
		$V_B = 0V \text{ or } 2.4V, V_A = 1.2V$	-20		+20	μA
		$V_B = -1.4V, V_A = 1.2V$	-32			μA
I _{AB}	Driver output differential current (I _A - I _B)	$V_A = V_B, -1.4V \le V \le 3.8V$	-4		+4	μA
I _{A(OFF)}	Driver output power-off current	$V_A = 3.8V, V_B = 1.2V, \\ DE = 0V \\ 0V \le V_{DD} \le 1.5V$			32	μA
		$V_A = 0V \text{ or } 2.4V, V_B = 1.2V, DE = 0V 0V \le V_{DD} \le 1.5V$	-20		+20	μA
		$V_A = -1.4V, V_B = 1.2V,$ DE = 0V $0V \le V_{DD} \le 1.5V$	-32			μΑ

⁽¹⁾ The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured.

⁽²⁾ Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground

except V_{OD} and ΔV_{OD} . (3) Typical values represent most likely parametric norms for $V_{DD} = +3.3V$ and $T_A = +25^{\circ}C$, and at the Recommended Operation Conditions at the time of product characterization and are not ensured.

⁽⁴⁾ C_L includes fixture capacitance and C_D includes probe capacitance.

Specification is ensured by characterization and is not tested in production.

Output short circuit current (I_{OS}) is specified as magnitude only, minus sign indicates direction only.

ELECTRICAL CHARACTERISTICS (continued)

Over recommended operating supply and temperature ranges unless otherwise specified. (1)(2)(3)(4)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{B(OFF)}	Driver output power-off current	$V_B = 3.8V, V_A = 1.2V,$ DE = 0V $0V \le V_{DD} \le 1.5V$			32	μА
		$V_B = 0V$ or 2.4V, $V_A = 1.2V$, DE = 0V $0V \le V_{DD} \le 1.5V$	-20		+20	μA
		$V_B = -1.4V, V_A = 1.2V, \\ DE = 0V \\ 0V \le V_{DD} \le 1.5V$	-32			μA
I _{AB(OFF)}	Driver output power-off differential current ($I_{A(OFF)} - I_{B(OFF)}$)	$V_A = V_B, -1.4V \le V \le 3.8V,$ DE = 0V $0V \le V_{DD} \le 1.5V$	-4		+4	μΑ
C _A	Driver output capacitance	V _{DD} = OPEN		7.8		pF
C _B	Driver output capacitance			7.8		pF
C _{AB}	Driver output differential capacitance			3		pF
C _{A/B}	Driver output capacitance balance (C _A /C _B)			1		
LVDS Rec	eiver DC Specifications					
V _{IT+}	Positive-going differential input voltage threshold			-5	100	mV
V _{IT} -	Negative-going differential input voltage threshold		-100	-5		mV
V_{CMR}	Common mode voltage range	VID = 100 mV	0.05		V _{DD} - 0.05	V
I _{IN}	Input current	VIN = 3.6V, V _{DD} = 3.6V		±1	±10	μΑ
		VIN = 0V, V _{DD} = 3.6V		±1	±10	μΑ
C _{IN}	Input capacitance	V _{DD} = OPEN		5		pF
POWER S	UPPLY CURRENT		•			
I _{CCD}	Driver Supply Current	$R_L = 50\Omega$, $DE = V_{DD}$		67	78	mA
I _{CCZ}	TRI-STATE Supply Current	DE = GND		21	26	mA

Submit Documentation Feedback

SWITCHING CHARACTERISTICS

Over recommended operating supply and temperature ranges unless otherwise specified. (1) (2) (3)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DRIVER AC S	PECIFICATION		<u>.</u>			
t _{PLH}	Differential Propagation Delay Low to High	$R_L = 50\Omega, C_L = 5 pF,$	3.0	5.5	8.5	ns
t _{PHL}	Differential Propagation Delay High to Low	$C_D = 0.5 \text{ pF}$	3.0	5.5	8.5	ns
$t_{SKD1} (t_{sk(p)})$	Pulse Skew t _{PLHD} - t _{PHLD} (4) (5)	See Figure 7 and Figure 8		65	350	ps
t _{SKD2}	Channel-to-Channel Skew ⁽⁶⁾⁽⁵⁾			65	400	ps
t _{SKD3}	Part-to-Part Skew ⁽⁷⁾⁽⁵⁾			2.2	2.5	ns
t _{SKD4}	Part-to-Part Skew ⁽⁸⁾				5.5	ns
t _{TLH} (t _r)	Rise Time ⁽⁵⁾		1.1	2.0	3.0	ns
t _{THL} (t _f)	Fall Time ⁽⁵⁾		1.1	2.0	3.0	ns
t _{PZH}	Enable Time (Z to Active High)	$R_L = 50\Omega, C_L = 5 pF,$		6	11	ns
t _{PZL}	Enable Time (Z to Active Low)	$C_D = 0.5 \text{ pF}$		6	11	ns
t _{PLZ}	Disable Time (Active Low to Z)	See Figure 9 and Figure 10		6	11	ns
t _{PHZ}	Disable Time (Active High to Z)			6	11	ns
f _{MAX}	Maximum Operating Frequency ⁽⁵⁾		125			MHz

- (1) The ELECTRICAL CHARACTERISTICS tables list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes.
- (2) Typical values represent most likely parametric norms for V_{DD} = +3.3V and T_A = +25°C, and at the Recommended Operation Conditions at the time of product characterization and are not ensured.
- (3) C_L includes fixture capacitance and C_D includes probe capacitance.
- (4) t_{SKD1}, |t_{PLHD} t_{PHLD}|, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.
- (5) Specification is ensured by characterization and is not tested in production.
- (6) t_{SKD2}, Channel-to-Channel Skew, is the difference in propagation delay (t_{PLHD} or t_{PHLD}) among all output channels.
- (7) t_{SKD3}, Part-to-Part Skew, is defined as the difference between the minimum and maximum specified differential propagation delays. This specification applies to devices at the same V_{DD} and within 5°C of each other within the operating temperature range.
- (8) t_{SKD4}, Part-to-Part Skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices over recommended operating temperature and voltage ranges, and across process distribution. t_{SKD4} is defined as |Max Min| differential propagation delay.

TEST CIRCUITS AND WAVEFORMS

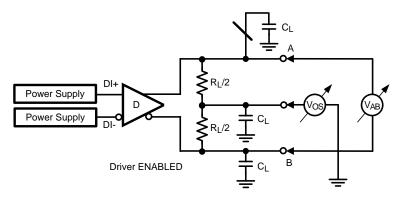


Figure 2. Differential Driver Test Circuit

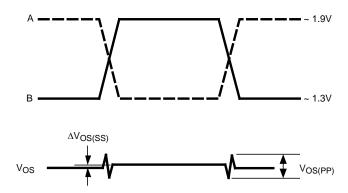


Figure 3. Differential Driver Waveforms

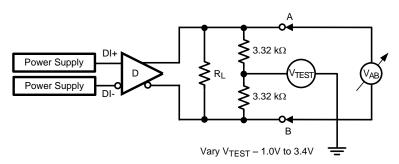


Figure 4. Differential Driver Full Load Test Circuit

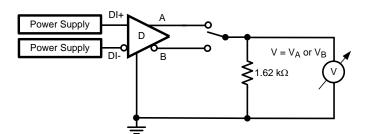


Figure 5. Differential Driver DC Open Test Circuit

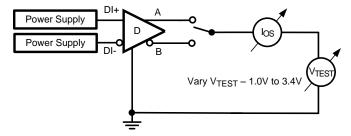


Figure 6. Differential Driver Short-Circuit Test Circuit

Submit Documentation Feedback

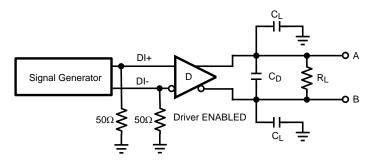


Figure 7. Driver Propagation Delay and Transition Time Test Circuit

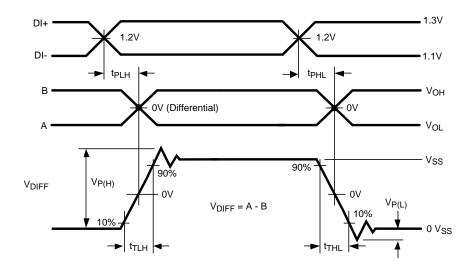


Figure 8. Driver Propagation Delays and Transition Time Waveforms

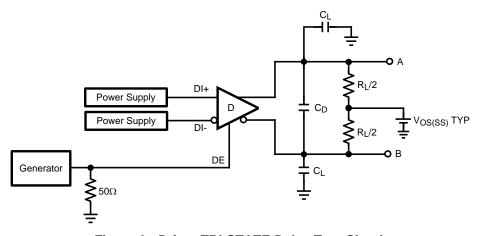


Figure 9. Driver TRI-STATE Delay Test Circuit

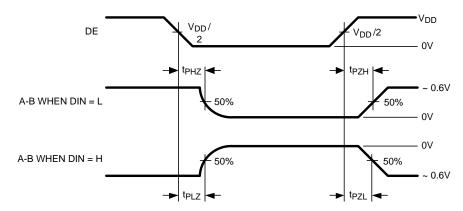


Figure 10. Driver TRI-STATE Delay Waveforms

TYPICAL PERFORMANCE CHARACTERISTICS

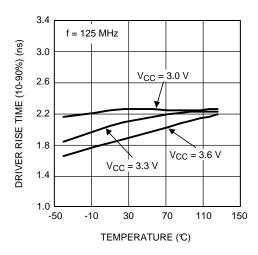


Figure 11. Driver Rise Time as a Function of Temperature

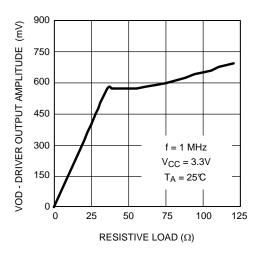


Figure 13. Driver Output Signal Amplitude as a Function of Resistive Load

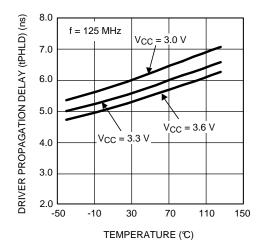


Figure 15. Driver Propagation Delay (tPHLD) as a Function of Temperature

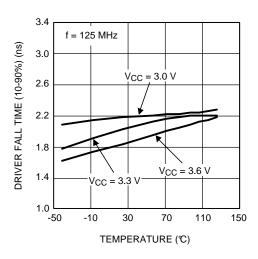


Figure 12. Driver Fall Time as a Function of Temperature

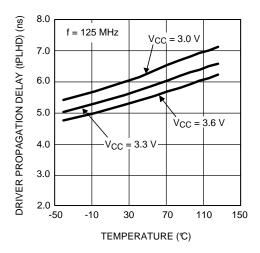


Figure 14. Driver Propagation Delay (tPLHD) as a Function of Temperature

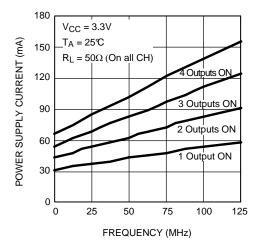


Figure 16. Driver Power Supply Current as a Function of Frequency

SNLS290C - AUGUST 2008-REVISED APRIL 2013

REVISION HISTORY

Cł	nanges from Revision B (April 2013) to Revision C	Pa	ge
•	Changed layout of National Data Sheet to TI format		11

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
DS91M125TMA/NOPB	ACTIVE	SOIC	D	16	48	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	DS91M125 TMA	Samples
DS91M125TMAX/NOPB	ACTIVE	SOIC	D	16	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	DS91M125 TMA	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

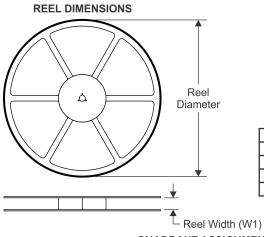
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

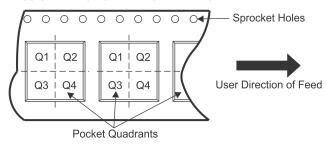
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



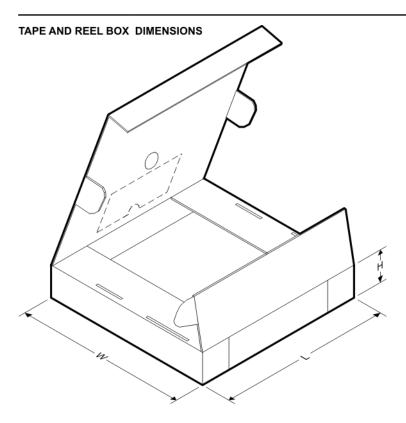
10-Dec-2020

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022


TAPE AND REEL INFORMATION

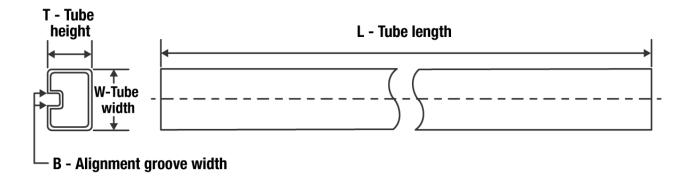
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS91M125TMAX/NOPB	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1

www.ti.com 5-Jan-2022

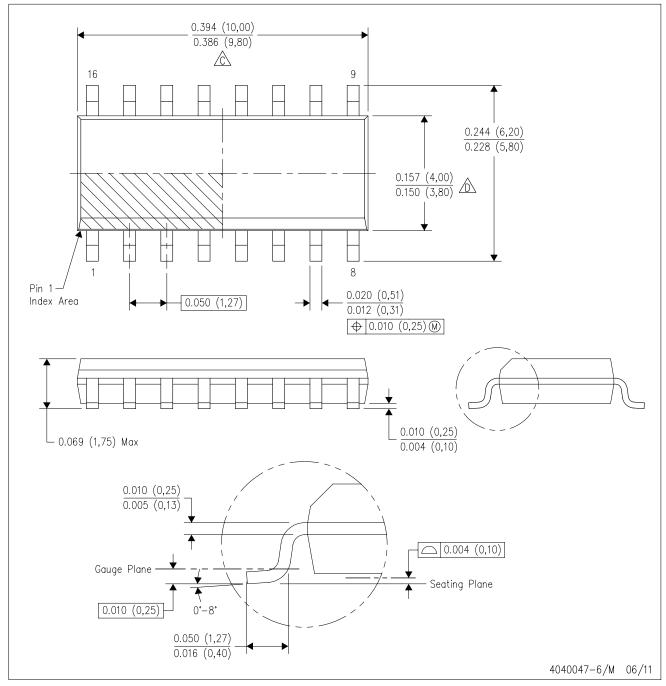

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS91M125TMAX/NOPB	SOIC	D	16	2500	367.0	367.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022

TUBE



*All dimensions are nominal

i									
	Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
	DS91M125TMA/NOPB	D	SOIC	16	48	495	8	4064	3.05

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated