









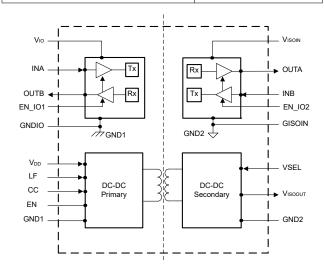

**ISOW7721** SLLSFP4 - JULY 2022

## ISOW7721 Two-Channel Digital Isolator with Integrated Low-Emissions, Low-Noise **DC-DC Converter**

#### 1 Features

- 100 Mbps data rate
- Integrated DC-DC converter with low-emissions, low-noise
  - Emissions optimized to meet CISPR 32 and EN 55032 Class B with >5 dB margin on 2 layer board
  - Low frequency power converter at 25 MHz enabling low noise performance
  - Low output ripple: 24 mV
- High efficiency output power
  - Efficiency at max load: 46%
  - Up to 0.55-W output power
  - V<sub>ISOOUT</sub> accuracy of ± 5%
  - 5 V to 5 V: Max available load current = 110 mA
  - 5 V to 3.3 V: Max available load current = 140
  - 3.3 V to 3.3 V: Max available load current = 60
- Support for multi-ISOW7721 chain to increase system power output to > 1-W and > 200 mA
- Independent power supply for channel isolator & power converter
  - Logic supply (V<sub>IO</sub>): 1.71-V to 5.5-V
  - Power converter supply (V<sub>DD</sub>): 3-V to 5.5-V
- Robust electromagnetic compatibility (EMC)
  - System-level ESD, EFT, and surge immunity
  - ±8 kV IEC 61000-4-2 contact discharge protection across isolation barrier
- Reinforced and Basic isolation options
- High CMTI: 100-kV/µs (typical)
- Safety Related Certifications (Planned):
  - VDE reinforced and basic insulation per DIN VDE V 0884-11:2017-01
  - UL 1577 component recognition program
  - IEC 62368-1, IEC 61010-1, IEC 60601-1 and GB 4943.1-2011 certifications
- Extended temperature range: -40°C to +125°C
- 20-pin wide body SOIC package

## 2 Applications


- **Factory automation**
- Motor control
- Grid infrastructure
- Medical equipment
- Test and measurement

## 3 Description

The ISOW7721 device is a galvanically-isolated dual-channel digital isolator with an integrated highefficiency power converter with low emissions. The integrated DC-DC converter provides up to 550 mW of isolated power, eliminating the need for a separate isolated power supply in space-constrained isolation designs. If additional power is needed, the ISOW7721 supports multi-device chaining, increasing the integrated power output to > 1 W using two devices in a system.

#### **Device Information**

| FEATURE            | ISOW7721<br>ISOW7721F                        |  |  |
|--------------------|----------------------------------------------|--|--|
| Protection Level   | Reinforced                                   |  |  |
| Surge Test Voltage | 10 kV <sub>PK</sub>                          |  |  |
| Isolation Rating   | 5000 V <sub>RMS</sub>                        |  |  |
| Working Voltage    | 1000 V <sub>RMS</sub> / 1500 V <sub>PK</sub> |  |  |
| Package            | DFM (20)                                     |  |  |
| Body Size (Nom)    | 12.83 mm × 7.5 mm                            |  |  |



**ISOW7721 Simplified Schematic** 



## **Table of Contents**

| 1 Features                                              | 1            | 7.18 Supply Current Characteristics Channel             |     |
|---------------------------------------------------------|--------------|---------------------------------------------------------|-----|
| 2 Applications                                          | 1            | Isolator - V <sub>IO</sub> , V <sub>ISOIN</sub> = 1.8-V | 16  |
| B Description                                           |              | 7.19 Switching Characteristics - 5-V Supply             |     |
| 4 Revision History                                      |              | 7.20 Switching Characteristics - 3.3-V Supply           | 18  |
| 5 Description (continued)                               | 3            | 7.21 Switching Characteristics - 2.5-V Supply           | 19  |
| 6 Pin Configuration and Functions                       | 4            | 7.22 Switching Characteristics - 1.8-V Supply           | 20  |
| 7 Specifications                                        |              | 7.23 Insulation Characteristics Curves                  | 21  |
| 7.1 Absolute Maximum Ratings                            | 6            | 7.24 Typical Characteristics                            | 22  |
| 7.2 ESD Ratings                                         |              | 8 Parameter Measurement Information                     | 27  |
| 7.3 Recommended Operating Conditions                    | 7            | 9 Detailed Description                                  | 29  |
| 7.4 Thermal Information                                 |              | 9.1 Overview                                            | 29  |
| 7.5 Power Ratings                                       | 8            | 9.2 Functional Block Diagram                            | 30  |
| 7.6 Insulation Specifications                           | <del>9</del> | 9.3 Feature Description                                 | 31  |
| 7.7 Safety-Related Certifications                       | 10           | 9.4 Device Functional Modes                             | 35  |
| 7.8 Safety Limiting Values                              | 10           | 10 Application and Implementation                       | 37  |
| 7.9 Electrical Characteristics - Power Converter        | 11           | 10.1 Application Information                            | 37  |
| 7.10 Supply Current Characteristics - Power             |              | 10.2 Typical Application                                | 37  |
| Converter                                               | 12           | 11 Power Supply Recommendations                         |     |
| 7.11 Electrical Characteristics Channel Isolator -      |              | 12 Layout                                               |     |
| V <sub>IO</sub> , V <sub>ISOIN</sub> = 5-V              | 13           | 12.1 Layout Guidelines                                  | 42  |
| 7.12 Supply Current Characteristics Channel             |              | 12.2 Layout Example                                     | 43  |
| Isolator - V <sub>IO</sub> , V <sub>ISOIN</sub> = 5-V   | 13           | 13 Device and Documentation Support                     | 44  |
| 7.13 Electrical Characteristics Channel Isolator -      |              | 13.1 Device Support                                     | 44  |
| V <sub>IO</sub> , V <sub>ISOIN</sub> = 3.3-V            | 14           | 13.2 Documentation Support                              | 44  |
| 7.14 Supply Current Characteristics Channel             |              | 13.3 Receiving Notification of Documentation Updates    | s44 |
| Isolator - V <sub>IO</sub> , V <sub>ISOIN</sub> = 3.3-V | 14           | 13.4 Support Resources                                  | 44  |
| 7.15 Electrical Characteristics Channel Isolator -      |              | 13.5 Trademarks                                         | 44  |
| $V_{IO}$ , $V_{ISOIN} = 2.5-V$                          | 15           | 13.6 Electrostatic Discharge Caution                    | 44  |
| 7.16 Supply Current Characteristics Channel             |              | 13.7 Glossary                                           | 44  |
| Isolator - V <sub>IO</sub> , V <sub>ISOIN</sub> = 2.5-V | 15           | 14 Mechanical, Packaging, and Orderable                 |     |
| 7.17 Electrical Characteristics Channel Isolator -      |              | Information                                             | 45  |
| V <sub>IO</sub> , V <sub>ISOIN</sub> = 1.8-V            | 16           |                                                         |     |

## **4 Revision History**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| DATE      | REVISION | NOTES            |
|-----------|----------|------------------|
| July 2022 | *        | Initial release. |



## 5 Description (continued)

The high-efficiency of the power converter allows for operation at a wide operating ambient temperature range of –40°C to +125°C. This device provides improved emissions performance, allowing for simplified board design and has provisions for ferrite beads to further attenuate emissions. The ISOW7721 has been designed with enhanced protection features in mind, including soft-start to limit inrush current, over-voltage and under-voltage lock out, overload and short-circuit protection, and thermal shutdown.

The ISOW7721 provide high electromagnetic immunity while isolating CMOS or LVCMOS digital I/Os. The signal-isolation channel has a logic input and output buffer separated by a double capacitive silicon dioxide (SiO<sub>2</sub>) insulation barrier, whereas, power isolation uses on-chip transformers separated by thin film polymer as insulating material. The ISOW7721 has 1 forward channel and 1 reverse channel. If the input signal is lost, the default output is high for the ISOW7721 device without the F suffix and low for the ISOW7721F with the F suffix. The ISOW7721 can operate from a single supply voltage of 3 V to 5.5 V by connecting  $V_{IO}$  and  $V_{DD}$  together on a PCB. If lower logic levels are required, these devices support 1.71 V to 5.5 V logic supply ( $V_{IO}$ ) that can be independent from the power converter supply ( $V_{DD}$ ) of 3 V to 5.5 V.  $V_{ISOIN}$  and  $V_{ISOOUT}$  need to be connected on board with either a ferrite bead or fed through a LDO.

These devices help prevent noise currents on data buses, such as UART, RS-485, RS-232, and CAN, or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. Through innovative chip design and layout techniques, electromagnetic compatibility of the device has been significantly enhanced to ease system-level ESD, EFT, surge and emissions compliance. The device is available in a 20-pin SOIC wide-body (SOIC-WB) DFM package.

## **6 Pin Configuration and Functions**

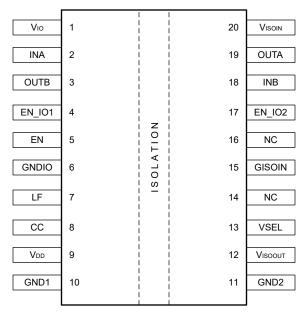



Figure 6-1. ISOW7721 DFM Package 20-Pin SOIC Top View

**Table 6-1. Pin Functions** 

|        | PIN      |     |                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|--------|----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|        | NO.      | I/O | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                |  |  |
| NAME   | ISOW7721 | 1   |                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| EN_IO1 | 4        | 1   | Output Enable 1: When EN_IO1 is high or open then the channel output pin on side 1 is enabled. When EN_IO1 is low then the channel output pin on side 1 is in a high impedance state and the transmitter of the channel input pin on side 1 is disabled.                                                                                                                   |  |  |
| EN_IO2 | 17       | 1   | Output Enable 2: When EN_IO2 is high or open then the channel output pin on side 2 is enabled. When EN_IO2 is low then the channel output pin on side 2 is in a high impedance state and the transmitter of the channel input pin on side 2 is disabled.                                                                                                                   |  |  |
| GNDIO  | 6        | _   | Ground connection for V <sub>IO</sub> . GND1 and GNDIO need to be shorted on board.                                                                                                                                                                                                                                                                                        |  |  |
| GISOIN | 15       | _   | Ground connection for $V_{\rm ISOIN}$ . GND2 and GISOIN pins can be shorted on board or connected through a ferrite bead. See the Layout Section for more information.                                                                                                                                                                                                     |  |  |
| GND1   | 10       | -   | Ground connection for V <sub>DD</sub> . GND1 and GNDIO needs to be shorted on board.                                                                                                                                                                                                                                                                                       |  |  |
| GND2   | 11       | _   | Ground connection for V <sub>ISOOUT</sub> . GND2 and GISOIN pins can be shorted on board or connected through a ferrite bead. See the Layout Section for more information.                                                                                                                                                                                                 |  |  |
| INA    | 2        | I   | Input channel A                                                                                                                                                                                                                                                                                                                                                            |  |  |
| INB    | 18       | I   | Input channel B                                                                                                                                                                                                                                                                                                                                                            |  |  |
| СС     | 8        | I/O | Multiple device pimary/secondary synchronization pin.  When LF is set to GND1, CC is an output used to sync to an additional ISOW7721. When LF is set to V <sub>DD</sub> , CC is an input. Connect the CC pin of the primary device to all the secondary devices. Leave CC floating if unused.  See Multi-Device Chaining for Increased Power Output for more information. |  |  |
| LF     | 7        | I   | Multiple device primary/secondary control logic.  Connect the LF to GND1 when used as the primary device or to V <sub>DD</sub> if used as the secondary device.  Tie LF to GND1 if used as a standalone device when not chaining the power converters.  See Multi-Device Chaining for Increased Power Output for more information.                                         |  |  |
| OUTA   | 19       | 0   | Output channel A                                                                                                                                                                                                                                                                                                                                                           |  |  |
| OUTB   | 3        | 0   | Output channel B                                                                                                                                                                                                                                                                                                                                                           |  |  |



## **Table 6-1. Pin Functions (continued)**

|                     | PIN      |     |                                                                                                                                                                                                                     |
|---------------------|----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME                | NO.      | I/O | DESCRIPTION                                                                                                                                                                                                         |
| NAME                | ISOW7721 |     |                                                                                                                                                                                                                     |
|                     |          |     | Power converter enable input pin: enables and disables the integrated DC-DC power converter.                                                                                                                        |
|                     |          |     | Connect directly to microcontroller or through a series current limiting resistor to use as an enable                                                                                                               |
| EN                  | 5        | I/O | input pin. DC-DC power converter is enabled when EN is high to the V <sub>IO</sub> voltage level and disabled                                                                                                       |
|                     |          |     | when low at GND1 voltage level.                                                                                                                                                                                     |
|                     |          |     | See Section 9.3.3 for more information                                                                                                                                                                              |
| VSEL                | 13       | I   | $V_{\rm ISOOUT}$ selection pin. $V_{\rm ISOOUT}$ = 5 V when VSEL shorted to $V_{\rm ISOOUT}$ . $V_{\rm ISOOUT}$ = 3.3 V, when VSEL shorted to GND2. For more information see the Device Functional Modes.           |
| V <sub>IO</sub>     | 1        | _   | Side 1 logic supply.                                                                                                                                                                                                |
| V <sub>DD</sub>     | 9        | _   | Side 1 DC-DC converter power supply.                                                                                                                                                                                |
| V <sub>ISOIN</sub>  | 20       | _   | Side 2 supply voltage for isolation channels. V <sub>ISOIN</sub> and V <sub>ISOOUT</sub> pins can be shorted on board or connected through a ferrite bead. See Application and Implementation for more information. |
| V <sub>ISOOUT</sub> | 12       | _   | Isolated power converter output voltage. V <sub>ISOIN</sub> and V <sub>ISOOUT</sub> pins can be shorted on board or connected through a ferrite bead. See Application and Implementation for more information.      |



## 7 Specifications

## 7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1) (2)

|                     |                                                                                                 | MIN  | MAX                       | UNIT |
|---------------------|-------------------------------------------------------------------------------------------------|------|---------------------------|------|
| $V_{DD}$            | Power converter supply voltage                                                                  | -0.5 | 6                         | V    |
| V <sub>ISOIN</sub>  | Isolated supply voltage, input supply for secondary side isolation channels                     | -0.5 | 6                         | V    |
| V <sub>ISOOUT</sub> | Isolated supply voltage, Power converter output VSEL shorted to GND2                            | -0.5 | 4                         | V    |
| V <sub>ISOOUT</sub> | Isolated supply voltage, Power converter output $V_{\text{SEL}}$ shorted to $V_{\text{ISOOUT}}$ | -0.5 | 6                         | V    |
| V <sub>IO</sub>     | Primary side logic supply voltage                                                               | -0.5 | 6                         | V    |
| $V_{LF}$            | Voltage at LF                                                                                   | -0.5 | 6                         | V    |
|                     | Voltage at INx, OUTx, EN_IOx <sup>(3)</sup>                                                     | -0.5 | V <sub>SI</sub> + 0.5     | V    |
| V                   | Voltage at EN/FLT                                                                               | -0.5 | V <sub>SI</sub> + 0.5     | V    |
|                     | Voltage at VSEL                                                                                 | -0.5 | V <sub>ISOOUT</sub> + 0.5 | V    |
| Io                  | Maximum output current through data channels                                                    | -15  | 15                        | mA   |
| TJ                  | Junction temperature                                                                            | -40  | 150                       | °C   |
| T <sub>stg</sub>    | Storage temperature                                                                             | -65  | 150                       | °C   |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

## 7.2 ESD Ratings

|                    |                         |                                                                                           | VALUE | UNIT |
|--------------------|-------------------------|-------------------------------------------------------------------------------------------|-------|------|
|                    |                         | Human-body model (HBM), per AEC Q100-002 <sup>(1)</sup><br>HBM ESD Classification Level 2 | ±3000 |      |
| V <sub>(ESD)</sub> | Electrostatic discharge | Charged-device model (CDM), per AEC Q100-011<br>CDM ESD Classification Level C6           | ±1500 | V    |
|                    |                         | Contact discharge per IEC 61000-4-2 <sup>(2)</sup> Isolation barrier withstand test       | ±8000 |      |

<sup>(1)</sup> AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

<sup>(2)</sup> V<sub>DD</sub>, V<sub>ISOIN</sub> V<sub>ISOOUT</sub>, and V<sub>IO</sub> are with respect to the local ground pin (GND1 or GND2). All voltage values except differential I/O bus voltages are peak voltage values.

<sup>(3)</sup> V<sub>SI</sub> = input side supply; Cannot exceed 6 V.

<sup>(2)</sup> IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.



## 7.3 Recommended Operating Conditions

Over recommended operating conditions, typical values are at VDD =  $V_{IO}$  = 3.3 V and  $T_A$  =25°C, GND1 = GNDIO, GND2 = GISOIN (unless otherwise noted)

| ,                       | ,                                                         |                                                           | MIN                   | NOM  | MAX                   | UNIT |
|-------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------|------|-----------------------|------|
| Power Conver            | rter                                                      |                                                           |                       |      |                       |      |
| \/                      | Power converter supply                                    | 3.3 V operation                                           | 2.97                  | 3.3  | 3.63                  | V    |
| $V_{DD}$                | voltage                                                   | 5 V operation                                             | 4.5                   | 5    | 5.5                   | V    |
| V <sub>DD(UVLO+)</sub>  | Positive threshold when power converter supply is rising  | Positive threshold when power converter supply is rising  |                       | 2.7  | 2.95                  | V    |
| V <sub>DD(UVLO-)</sub>  | Positive threshold when power converter supply is falling | Positive threshold when power converter supply is falling | 2.40                  | 2.55 |                       | V    |
| V <sub>DD(HYS)</sub>    | Power converter supply voltage hysteresis                 | Power converter supply voltage hysteresis                 | 0.15                  |      |                       | V    |
| Channel Isola           | tion                                                      |                                                           |                       |      | ·                     |      |
| ), ), (3)               | Channel logic supply voltage                              | 1.8 V operation                                           | 1.71                  |      | 1.89                  | V    |
| $V_{IO}, V_{ISOIN}$ (3) |                                                           | 2.5 V, 3.3 V, and 5 V operation                           | 2.25                  |      | 5.5                   | V    |
| V <sub>IO(UVLO+)</sub>  | Rising threshold of logic supp                            | ly voltage                                                |                       | 1.55 | 1.7                   | V    |
| V <sub>IO(UVLO-)</sub>  | Falling threshold of logic supp                           | bly voltage                                               | 1.0                   | 1.41 |                       | V    |
| V <sub>IO(HYS)</sub>    | Logic supply voltage hysteres                             | sis                                                       | 75                    |      |                       | mV   |
|                         | High level output current <sup>(1)</sup>                  | V <sub>ISOIN</sub> = 5 V                                  | -4                    |      |                       | mA   |
|                         |                                                           | V <sub>ISOIN</sub> = 3.3 V                                | -2                    |      |                       | mA   |
| I <sub>OH</sub>         |                                                           | V <sub>ISOIN</sub> = 2.5 V                                | -1                    |      |                       | mA   |
|                         |                                                           | V <sub>ISOIN</sub> = 1.8 V                                | -1                    |      |                       | mA   |
|                         |                                                           | V <sub>ISOIN</sub> = 5 V                                  |                       |      | 4                     | mA   |
|                         | Low lovel output ourrent(1)                               | V <sub>ISOIN</sub> = 3.3 V                                |                       |      | 2                     | mA   |
| l <sub>OL</sub>         | Low level output current <sup>(1)</sup>                   | V <sub>ISOIN</sub> = 2.5 V                                |                       |      | 1                     | mA   |
|                         |                                                           | V <sub>ISOIN</sub> = 1.8 V                                |                       |      | 1                     | mA   |
| V <sub>IH</sub>         | High-level input voltage(2)                               |                                                           | 0.7 × V <sub>SI</sub> |      | V <sub>SI</sub>       | V    |
| V <sub>IL</sub>         | Low-level input voltage                                   |                                                           | 0                     |      | 0.3 × V <sub>SI</sub> | V    |
| DR                      | Data rate                                                 |                                                           |                       |      | 100                   | Mbps |
| t <sub>PWRUP</sub>      | Channel isolator ready after power up or EN/FLT high      | V <sub>ISOIN</sub> > V <sub>IO(UVLO+)</sub>               |                       | 5    |                       | ms   |
| T <sub>A</sub>          | Ambient temperature                                       |                                                           | -40                   |      | 125                   | °C   |

This current is for data output channel.

<sup>(2)</sup> 

 $V_{SI}$  = input side supply;  $V_{SO}$  = output side supply The channel outputs are in undetermined state when 1.89 V <  $V_{SI}$  < 2.25 V and 1.05 V <  $V_{SI}$  < 1.71 V



## 7.4 Thermal Information

|                       |                                              | ISOW7721   |      |
|-----------------------|----------------------------------------------|------------|------|
|                       | THERMAL METRIC <sup>(1)</sup>                | DFM (SOIC) | UNIT |
|                       |                                              | 20 PINS    |      |
| R <sub>θJA</sub>      | Junction-to-ambient thermal resistance       | 68.5       | °C/W |
| R <sub>0JC(top)</sub> | Junction-to-case (top) thermal resistance    | 24.6       | °C/W |
| R <sub>θJB</sub>      | Junction-to-board thermal resistance         | 53.7       | °C/W |
| $\Psi_{JT}$           | Junction-to-top characterization parameter   | 17.1       | °C/W |
| $\Psi_{JB}$           | Junction-to-board characterization parameter | 50.9       | °C/W |
| R <sub>0JC(bot)</sub> | Junction-to-case (bottom) thermal resistance | _          | °C/W |

<sup>(1)</sup> For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

## 7.5 Power Ratings

 $V_{DD}$  =  $V_{IO}$  = 5.5 V,  $I_{ISO}$  = 110 mA,  $T_J$  = 150°C,  $T_A$  ≤ 80°C,  $C_L$  = 15 pF, input a 50-MHz 50% duty-cycle square wave

|                 | PARAMETER                              | TEST CONDITIONS                                                                                                                             | MIN | TYP | MAX  | UNIT |
|-----------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|------|
| P <sub>D</sub>  | Maximum power dissipation (both sides) |                                                                                                                                             |     |     | 1.48 | W    |
| P <sub>D1</sub> |                                        | $V_{\text{ISOIN}}$ , $I_{\text{ISOOUT}}$ = 100 mA, $T_{\text{J}}$ = 150°C, $T_{\text{A}} \le 80$ °C, $T_{\text{L}}$ = 15 pF, input a 50-MHz |     |     | 0.74 | W    |
| P <sub>D2</sub> |                                        | 50% duty-cycle square wave                                                                                                                  |     |     | 0.74 | W    |

Product Folder Links: /SOW7721



## 7.6 Insulation Specifications

| <b>GENERA</b><br>CLR                                  | AL                                                      |                                                                                                                                                                                                        |                    |                  |
|-------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|
| CLR                                                   |                                                         |                                                                                                                                                                                                        |                    |                  |
|                                                       | External clearance <sup>(1)</sup>                       | Shortest terminal-to-terminal distance through air                                                                                                                                                     | >8                 | mm               |
| CPG                                                   | External creepage <sup>(1)</sup>                        | Shortest terminal-to-terminal distance across the package surface                                                                                                                                      | >8                 | mm               |
| DTI Distance through the insulation signal isolation) |                                                         | Minimum internal gap (internal clearance – capacitive signal isolation)                                                                                                                                | > 17               |                  |
|                                                       |                                                         | Minimum internal gap (internal clearance – transformer power isolation)                                                                                                                                | >120               | — μm             |
| СТІ                                                   | Comparative tracking index                              | DIN EN 60112 (VDE 0303-11); IEC 60112                                                                                                                                                                  | > 600              | V                |
|                                                       | Material group                                          | According to IEC 60664-1                                                                                                                                                                               | I                  |                  |
|                                                       |                                                         | Rated mains voltage ≤ 300 V <sub>RMS</sub>                                                                                                                                                             | I-IV               |                  |
|                                                       | Overvoltage category per IEC 60664-1                    | Rated mains voltage ≤ 600 V <sub>RMS</sub>                                                                                                                                                             | I-IV               |                  |
|                                                       |                                                         | Rated mains voltage ≤ 1000 V <sub>RMS</sub>                                                                                                                                                            | 1-111              | 7                |
| DIN VDE                                               | V 0884-11:2017-01 <sup>(2)</sup>                        |                                                                                                                                                                                                        |                    |                  |
| V <sub>IORM</sub>                                     | Maximum repetitive peak isolation voltage               | AC voltage (bipolar)                                                                                                                                                                                   | 1500               | V <sub>PK</sub>  |
| V <sub>IOWM</sub>                                     | Maximum working isolation voltage                       | AC voltage; Time dependent dielectric breakdown (TDDB) Test                                                                                                                                            | 1000               | V <sub>RMS</sub> |
| IOVVIVI                                               |                                                         | DC voltage                                                                                                                                                                                             | 1500               | V <sub>DC</sub>  |
| V <sub>IOTM</sub>                                     | Maximum transient isolation voltage                     | V <sub>TEST</sub> = V <sub>IOTM</sub> ; t = 60 s (qualification);<br>V <sub>TEST</sub> = 1.2 × V <sub>IOTM</sub> ; t = 1 s (100% production)                                                           | 7071               | V <sub>PK</sub>  |
| V <sub>IOSM</sub>                                     | Maximum surge isolation voltage ISOW7721 <sup>(3)</sup> | Test method per IEC 62368-1, 1.2/50 μs waveform,<br>V <sub>TEST</sub> = 1.6 × V <sub>IOSM</sub> = 10000 V <sub>PK</sub> (qualification)                                                                | 6250               | V <sub>PK</sub>  |
|                                                       |                                                         | Method a, after input/output safety test subgroup 2/3, $V_{ini} = V_{IOTM}$ , $t_{ini} = 60$ s, $V_{pd(m)} = 1.2 \times V_{IORM}$ , $t_m = 10$ s                                                       | ≤ 5                |                  |
| q <sub>pd</sub>                                       | Apparent charge <sup>(4)</sup>                          | Method a, after environmental tests subgroup 1, $V_{ini}$ = $V_{IOTM}$ , $t_{ini}$ = 60 s, $V_{pd(m)}$ = 1.6 × $V_{IORM}$ , $t_m$ = 10 s                                                               | ≤ 5                | рС               |
|                                                       |                                                         | Method b1, at routine test (100% production) and preconditioning (type test), $V_{ini} = 1.2 \times V_{IOTM}$ , $t_{ini} = 1$ s, $V_{pd(m)} = 1.875 \times V_{IORM}$ , $t_m = 1$ s                     | ≤ 5                |                  |
| C <sub>IO</sub>                                       | Barrier capacitance, input to output <sup>(5)</sup>     | $V_{IO} = 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}$                                                                                                                                                 | ~3.5               | pF               |
|                                                       |                                                         | V <sub>IO</sub> = 500 V, T <sub>A</sub> = 25°C                                                                                                                                                         | > 10 <sup>12</sup> |                  |
| R <sub>IO</sub>                                       | Insulation resistance <sup>(5)</sup>                    | V <sub>IO</sub> = 500 V, 100°C ≤ T <sub>A</sub> ≤ 125°C                                                                                                                                                | > 10 <sup>11</sup> | Ω                |
|                                                       |                                                         | V <sub>IO</sub> = 500 V, T <sub>S</sub> = 150°C                                                                                                                                                        | > 10 <sup>9</sup>  |                  |
|                                                       | Pollution degree                                        |                                                                                                                                                                                                        | 2                  |                  |
|                                                       | Climatic category                                       |                                                                                                                                                                                                        | 40/125/21          |                  |
| UL 1577                                               |                                                         | · ·                                                                                                                                                                                                    |                    |                  |
| V <sub>ISO(UL)</sub>                                  | Withstand isolation voltage                             | $\begin{aligned} &V_{TEST} = V_{ISO(UL)} = 5000 \ V_{RMS}, \ t = 60 \ s \ (qualification), \\ &V_{TEST} = 1.2 \times V_{ISO(UL)} = 6000 \ V_{RMS}, \ t = 1 \ s \ (100\% \\ &production) \end{aligned}$ | 5000               | V <sub>RMS</sub> |

- (1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications.
- (2) ISOW77xx is suitable for *safe electrical insulation* and ISOW77xxB is suitable for *basic electrical insulation* only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- (3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
- (4) Apparent charge is electrical discharge caused by a partial discharge (pd).
- (5) All pins on each side of the barrier tied together creating a two-terminal device.



### 7.7 Safety-Related Certifications

| VDE                                                                                                                                                                                                          | CSA                                                                                                                                                                                                                                                                                                                                                                                                   | UL                                                           | CQC                                                                                                       | TUV                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Certified according to DIN VDE V 0884-11:2017-01                                                                                                                                                             | Certified according to IEC 62368-1, and IEC 60601-1                                                                                                                                                                                                                                                                                                                                                   | Recognized under<br>UL 1577 Component<br>Recognition Program | Certified according to GB 4943.1-2011                                                                     | Certified according to<br>EN 61010-1:2010/A1:2019<br>and EN 62368-1:2014                                                                                                                                                        |
| Reinforced insulation; Maximum transient isolation voltage, 7071 V <sub>PK</sub> ; Maximum repetitive peak isolation voltage, 1500 V <sub>PK</sub> ; Maximum surge isolation voltage, 6250 V <sub>PK</sub> . | CSA 62368-1-19 and IEC 62368-1:2018 Ed. 3 and EN 62368-1:2020. (pollution degree 2, material group I) 600 V <sub>RMS</sub> maximum working voltage; 2 MOPP (Means of Patient Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3+A1, 250 V <sub>RMS</sub> maximum working voltage. Temperature rating is 90°C for reinforced insulation and 125°C for basic insulation; see certificate for details. | Single protection, 5000<br>V <sub>RMS</sub>                  | Reinforced Insulation, Altitude ≤ 5000 m, Tropical Climate, 700 V <sub>RMS</sub> maximum working voltage; | 5000 V <sub>RMS</sub> Reinforced insulation per EN 61010-1:2010 up to working voltage of 600 V <sub>RMS</sub> ; 5000 V <sub>RMS</sub> Reinforced insulation per EN 62368-1:2014 up to working voltage of 600 V <sub>RMS</sub> . |
| Certificate #: Pending<br>Basic: Pending                                                                                                                                                                     | Master Contract#: Pending                                                                                                                                                                                                                                                                                                                                                                             | File #: Pending                                              | Certificate #: Pending                                                                                    | Client ID: Pending                                                                                                                                                                                                              |

## 7.8 Safety Limiting Values

Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.

| PARAMETER      |                                                        | TEST CONDITIONS                                                                                      | MIN | TYP | MAX  | UNIT |
|----------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----|-----|------|------|
| I <sub>S</sub> | Safety input, output, or supply current <sup>(1)</sup> | $R_{\theta JA} = 68.5^{\circ}$ C/W, $V_I = 5.5$ V, $T_J = 150^{\circ}$ C, $T_A = 25^{\circ}$ C       |     |     | 332  | mA   |
|                |                                                        | $R_{\theta JA} = 68.5^{\circ}$ C/W, $V_{I} = 3.6$ V, $T_{J} = 150^{\circ}$ C, $T_{A} = 25^{\circ}$ C |     |     | 507  | ША   |
| Ps             | Safety input, output, or total power <sup>(1)</sup>    | R <sub>0JA</sub> = 68.5°C/W, T <sub>J</sub> = 150°C, T <sub>A</sub> = 25°C                           |     |     | 1825 | mW   |
| T <sub>S</sub> | Maximum safety temperature <sup>(1)</sup>              |                                                                                                      |     |     | 150  | °C   |

The maximum safety temperature,  $T_S$ , has the same value as the maximum junction temperature,  $T_J$ , specified for the device. The I<sub>S</sub> and P<sub>S</sub> parameters represent the safety current and safety power respectively. The maximum limits of I<sub>S</sub> and P<sub>S</sub> should not be exceeded. These limits vary with the ambient temperature,  $T_A$ .

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

The junction-to-air thermal resistance,  $R_{\theta JA}$ , in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount packages. Use the following equations to calculate the value for each parameter:

 $T_J = T_A + R_{\theta JA} \times P$ , where P is the power dissipated in the device.  $T_{J(max)} = T_S = T_A + R_{\theta JA} \times P_S$ , where  $T_{J(max)}$  is the maximum allowed junction temperature.  $P_S = I_S \times V_I$ , where  $V_I$  is the maximum input voltage.



## 7.9 Electrical Characteristics - Power Converter

 $V_{DD}$  = 5 V ±10% or 3.3 V ±10% and  $V_{ISOIN}$  power externally, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified)

| ,                          | nditions, unless otherwise spe                                                    | TEST CONDITIONS                                                                                                                                                                                                | MIN    | TYP | MAX   | UNIT  |
|----------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-------|-------|
| V -5VV                     |                                                                                   | TEST CONDITIONS                                                                                                                                                                                                | IVIIIN | IIF | IVIAA | CINIT |
|                            | SOOUT = 5 V, V <sub>SEL</sub> = V <sub>ISOOUT</sub>                               | I=                                                                                                                                                                                                             |        |     |       | .,,   |
| V <sub>ISOOUT</sub>        | Isolated supply voltage                                                           | External I <sub>ISOOUT</sub> = 0 to 55 mA                                                                                                                                                                      | 4.75   | 5   | 5.25  | V     |
| V <sub>ISOOUT</sub>        | Isolated supply voltage                                                           | External I <sub>ISOOUT</sub> = 0 to 110 mA                                                                                                                                                                     | 4.5    | 5   | 5.25  | V     |
| V <sub>ISOOUT(LINE</sub> ) | DC line regulation                                                                | I <sub>ISOOUT</sub> = 55 mA, V <sub>DD</sub> = 4.5 V to 5.5 V                                                                                                                                                  |        | 2   |       | mV/V  |
| V <sub>ISOOUT(LOA</sub>    | DC load regulation                                                                | I <sub>ISOOUT</sub> = 0 to 110 mA                                                                                                                                                                              |        | 1%  |       |       |
| EFF                        | Efficiency at maximum load current <sup>(1)</sup>                                 | $\begin{split} &I_{ISOOUT} = 110 \text{ mA, } C_{LOAD} = 0.01  \mu\text{F    } 10  \mu\text{F;} \\ &V_{I} = V_{DD} \text{ (ISOW772x); } V_{I} = 0 \text{ V (ISOW772x)} \\ &\text{with F suffix).} \end{split}$ |        | 46% |       |       |
| V <sub>ISOOUT(RIP)</sub>   | Output ripple on isolated supply (pk-pk)                                          | 20-MHz bandwidth, $C_{LOAD}$ = 0.01 $\mu$ F    20 $\mu$ F, $I_{ISOOUT}$ = 110 mA                                                                                                                               |        | 24  |       | mV    |
| I <sub>ISOOUT_SC</sub>     | DC current from V <sub>DD</sub> supply under short circuit on V <sub>ISOOUT</sub> | V <sub>ISOOUT</sub> shorted to GND2                                                                                                                                                                            | 250    |     | mA    |       |
| $V_{DD} = 5 V, V_{I}$      | SOOUT = 3.3 V, V <sub>SEL</sub> = GND2                                            |                                                                                                                                                                                                                |        |     |       |       |
| V <sub>ISOOUT</sub>        | Isolated supply voltage                                                           | External I <sub>ISOOUT</sub> = 0 to 70 mA                                                                                                                                                                      | 3.135  | 3.3 | 3.465 | V     |
| V <sub>ISOOUT</sub>        | Isolated supply voltage                                                           | External I <sub>ISOOUT</sub> = 0 to 140 mA                                                                                                                                                                     | 3.135  | 3.3 | 3.465 | V     |
| V <sub>ISOOUT(LINE</sub> ) | DC line regulation                                                                | I <sub>ISOOUT</sub> = 70 mA, V <sub>DD</sub> = 4.5 V to 5.5 V                                                                                                                                                  |        | 2   |       | mV/V  |
| V <sub>ISOOUT(LOA</sub>    | DC load regulation                                                                | I <sub>ISOOUT</sub> = 0 to 140 mA                                                                                                                                                                              |        | 1%  |       |       |
| EFF                        | Efficiency at maximum load current (1)                                            | $I_{\rm ISOOUT}$ = 140 mA, $C_{\rm LOAD}$ = 0.01 μF    10 μF; $V_{\rm I}$ = $V_{\rm DD}$ (ISOW772x); $V_{\rm I}$ =0 V (ISOW772x with F suffix).                                                                |        | 36% |       |       |
| V <sub>ISOOUT(RIP)</sub>   | Output ripple on isolated supply (pk-pk)                                          | 20-MHz bandwidth , $C_{LOAD}$ = 0.01 $\mu$ F    20 $\mu$ F,   $I_{ISOOUT}$ = 110 mA                                                                                                                            |        | 30  |       | mV    |
| I <sub>ISOOUT_SC</sub>     | DC current from V <sub>DD</sub> supply under short circuit on V <sub>ISOOUT</sub> | V <sub>ISOOUT</sub> shorted to GND2                                                                                                                                                                            |        | 250 |       | mA    |
| V <sub>DD</sub> = 3.3 V,   | V <sub>ISOOUT</sub> = 3.3 V, V <sub>SEL</sub> = GND2                              |                                                                                                                                                                                                                |        |     |       |       |
| V <sub>ISOOUT</sub>        | Isolated supply voltage                                                           | External I <sub>ISOOUT</sub> = 0 to 30 mA                                                                                                                                                                      | 3.135  | 3.3 | 3.465 | V     |
| V <sub>ISOOUT</sub>        | Isolated supply voltage                                                           | External I <sub>ISOOUT</sub> = 0 to 60 mA                                                                                                                                                                      | 3.135  | 3.3 | 3.465 | V     |
| V <sub>ISOOUT(LINE</sub> ) | DC line regulation                                                                | I <sub>ISOOUT</sub> = 30 mA, V <sub>DD</sub> = 3.0 V to 3.6 V                                                                                                                                                  |        | 2   |       | mV/V  |
| V <sub>ISOOUT(LOA</sub>    | DC load regulation                                                                | I <sub>ISOOUT</sub> = 0 to 60 mA                                                                                                                                                                               |        | 1%  |       |       |
| EFF                        | Efficiency at maximum load current <sup>(1)</sup>                                 | $\begin{split} &I_{ISOOUT} = 60 \text{ mA, } C_{LOAD} = 0.01  \mu\text{F }     10  \mu\text{F}; \\ &V_{I} = V_{DD}  (ISOW772x); V_{I} = 0  V  (ISOW772x) \\ &\text{with } F  \text{suffix)}. \end{split}$      |        | 43% |       |       |
| V <sub>ISOOUT(RIP)</sub>   | Output ripple on isolated supply (pk-pk)                                          | 20-MHz bandwidth, $C_{LOAD}$ = 0.01 μF    20 μF, $I_{ISOOUT}$ = 60 mA                                                                                                                                          |        | 14  |       | mV    |
| I <sub>ISOOUT_SC</sub>     | DC current from V <sub>DD</sub> supply under short circuit on V <sub>ISOOUT</sub> | V <sub>ISOOUT</sub> shorted to GND2                                                                                                                                                                            |        | 185 |       | mA    |

<sup>(1)</sup> Power converter I<sub>LOAD</sub> = current required to power the secondary side. I<sub>LOAD</sub> does not take into account the channel isolator current. See Supply Current Characteristics Channel Isolator section for details.



## 7.10 Supply Current Characteristics - Power Converter

 $V_{DD}$  = 5 V ±10% or 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless otherwise noted).

| PARAMETER                            | TEST CONDITION                                                | DNS                                    | SUPPLY<br>CURRENT   | MIN | TYP  | MAX  | UNIT |
|--------------------------------------|---------------------------------------------------------------|----------------------------------------|---------------------|-----|------|------|------|
| Power Converter Disabled             |                                                               |                                        |                     |     |      |      |      |
| Power converter supply current       | EN/FLT = GND1, V <sub>ISOOUT</sub> = No I <sub>L</sub>        | DAD                                    | I <sub>DD</sub>     |     | 0.28 | 0.45 | mA   |
| Logic supply current                 | N/FLT = GND1                                                  |                                        | I <sub>IO</sub>     |     | 0.27 | 0.57 | mA   |
| Power Converter Enabled              |                                                               |                                        |                     |     |      |      |      |
|                                      | V <sub>DD</sub> = 5 V, V <sub>SEL</sub> = V <sub>ISOOUT</sub> | I <sub>LOAD</sub> = 55 mA              |                     |     | 115  | 171  | mA   |
|                                      | V <sub>DD</sub> = 5 V, V <sub>SEL</sub> = V <sub>ISOOUT</sub> | I <sub>LOAD</sub> = 110 mA             |                     |     | 225  | 316  | mA   |
| Power converter supply current input | V <sub>DD</sub> = 5 V, V <sub>SEL</sub> = GND2                | I <sub>LOAD</sub> = 70 mA              | ]                   |     | 127  | 169  | mA   |
| Current input                        | V <sub>DD</sub> = 5 V, V <sub>SEL</sub> = GND2                | I <sub>LOAD</sub> = 140 mA             | IDD                 |     | 250  | 310  | mA   |
|                                      | V <sub>DD</sub> = 3.3 V, V <sub>SEL</sub> = GND2              | I <sub>LOAD</sub> = 30 mA              |                     |     | 74   | 112  | mA   |
|                                      | V <sub>DD</sub> = 3.3 V, V <sub>SEL</sub> = GND2              | I <sub>LOAD</sub> = 60 mA              |                     |     | 143  | 216  | mA   |
|                                      | V <sub>DD</sub> = 5 V                                         | V <sub>SEL</sub> = V <sub>ISOOUT</sub> |                     | 110 |      |      | mA   |
| Power converter output current (1)   | V <sub>DD</sub> = 5 V                                         | V <sub>SEL</sub> = GND2                | I <sub>ISOOUT</sub> | 140 |      |      | mA   |
|                                      | V <sub>DD</sub> = 3.3 V                                       | V <sub>SEL</sub> = GND2                |                     | 60  |      |      | mA   |

<sup>(1)</sup> I<sub>LOAD</sub> does not take into account the channel isolator current. See Supply Current Characteristics Channel Isolator section for details.



## 7.11 Electrical Characteristics Channel Isolator - $V_{IO}$ , $V_{ISOIN}$ = 5-V

V<sub>IO</sub>, V<sub>ISOIN</sub> = 5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified)

|                     | PARAMETER                            | TEST CONDITIONS                                                                                                        | MIN                       | TYP | MAX                   | UNIT  |
|---------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|-----------------------|-------|
| Channel I           | solation                             |                                                                                                                        |                           |     | '                     |       |
| V <sub>ITH</sub>    | Input pin rising threshold           |                                                                                                                        |                           |     | 0.7 x V <sub>SI</sub> | V     |
| $V_{ITL}$           | Input pin falling threshold          |                                                                                                                        | 0.3 x V <sub>SI</sub>     |     |                       | V     |
| V <sub>I(HYS)</sub> | Input pin threshold hysteresis (INx) |                                                                                                                        | 0.1 x V <sub>SI</sub>     |     |                       | V     |
| I <sub>IL</sub>     | Low level input current              | V <sub>IL</sub> = 0 at INx                                                                                             | -25                       |     |                       | μA    |
| I <sub>IH</sub>     | High level input current             | V <sub>IH</sub> = V <sub>SI</sub> <sup>(1)</sup> at INx                                                                |                           |     | 25                    | μA    |
| V <sub>OH</sub>     | High level output voltage            | I <sub>O</sub> = -4 mA, see Switching Characteristics<br>Test Circuit and Voltage Waveforms                            | V <sub>SO</sub> (1) – 0.4 |     |                       | V     |
| V <sub>OL</sub>     | Low level output voltage             | I <sub>O</sub> = 4 mA, see Switching Characteristics Test<br>Circuit and Voltage Waveforms                             |                           |     | 0.4                   | V     |
| CMTI                | Common mode transient immunity       | V <sub>I</sub> = V <sub>SI</sub> or 0 V, V <sub>CM</sub> = 1000 V; see Common-<br>Mode Transient Immunity Test Circuit | 85                        | 100 |                       | kV/us |

<sup>(1)</sup>  $V_{SI}$  = input side supply;  $V_{SO}$  = output side supply

7.12 Supply Current Characteristics Channel Isolator -  $V_{IO}$ ,  $V_{ISOIN}$  = 5-V  $V_{IO}$ ,  $V_{ISOIN}$  = 5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified)

| PARAMETER                | TEST CONDITION                                                                                                                             | S         | SUPPLY<br>CURRENT  | MIN | TYP  | MAX  | UNIT |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|-----|------|------|------|
| ISOW7721 Channel Supply  | / Current                                                                                                                                  |           |                    |     |      |      |      |
|                          |                                                                                                                                            |           | I <sub>DD_IO</sub> |     | 3.5  | 6    | mA   |
| Supply current - Disable | EN_IO1 = EN_IO2 = 0 V; $V_I = V_{CCI}$ (ISOW7721); $V_I = 0$ V (ISOW7721 with F suffix)                                                    |           | I <sub>ISOIN</sub> |     | 3.5  | 5    | mA   |
| Supply current - Disable |                                                                                                                                            |           | I <sub>DD_IO</sub> |     | 3.5  | 6    | mA   |
|                          |                                                                                                                                            |           | I <sub>ISOIN</sub> |     | 3.5  | 5    | mA   |
|                          | $\begin{split} & EN\_IO1 = EN\_IO2 = V_{CCI}; \ V_I = V_{CCI} \ (ISOW7721); \\ & V_I = 0 \ V \ (ISOW7721 \ with \ F \ suffix) \end{split}$ |           | I <sub>DD_IO</sub> |     | 3.5  | 6    | mA   |
| Channel Supply current - |                                                                                                                                            |           | I <sub>ISOIN</sub> |     | 3.5  | 5    | mA   |
| DC signal                | $\begin{split} & EN\_IO1 = EN\_IO2 = V_{CCI}; \ V_I = 0 \ V \ (ISOW7721); \\ & V_I = V_{CCI} \ (ISOW7721 \ with \ F \ suffix) \end{split}$ |           | I <sub>DD_IO</sub> |     | 4.5  | 7    | mA   |
|                          |                                                                                                                                            |           | I <sub>ISOIN</sub> |     | 5    | 7    | mA   |
|                          |                                                                                                                                            | 1 Mbps    | I <sub>DD_IO</sub> |     | 4    | 6.5  | mA   |
|                          |                                                                                                                                            | 1 Mbps    | I <sub>ISOIN</sub> |     | 4    | 6    | mA   |
| Channel Supply current - | All channels switching with square                                                                                                         | 10 Mbps   | I <sub>DD_IO</sub> |     | 4.8  | 7    | mA   |
| AC signal                | wave clock input; C <sub>L</sub> = 15 pF                                                                                                   | TO IVIDPS | I <sub>ISOIN</sub> |     | 4.9  | 6.7  | mA   |
|                          |                                                                                                                                            | 100 Mbps  | I <sub>DD_IO</sub> |     | 11.6 | 14.6 | mA   |
|                          |                                                                                                                                            |           | I <sub>ISOIN</sub> |     | 11.8 | 14.3 | mA   |

<sup>(1)</sup>  $V_{CCI} = V_{IO} \text{ or } V_{ISOIN}$ 



## 7.13 Electrical Characteristics Channel Isolator - $V_{IO}$ , $V_{ISOIN}$ = 3.3-V

V<sub>IO</sub>, V<sub>ISOIN</sub> = 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified)

|                     | PARAMETER                            | TEST CONDITIONS                                                                                                        | MIN                       | TYP | MAX                   | UNIT  |
|---------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|-----------------------|-------|
| Channel I           | solation                             |                                                                                                                        |                           |     | '                     |       |
| V <sub>ITH</sub>    | Input pin rising threshold           |                                                                                                                        |                           |     | 0.7 x V <sub>SI</sub> | V     |
| V <sub>ITL</sub>    | Input pin falling threshold          |                                                                                                                        | 0.3 x V <sub>SI</sub>     |     |                       | V     |
| V <sub>I(HYS)</sub> | Input pin threshold hysteresis (INx) |                                                                                                                        | 0.1 x V <sub>SI</sub>     |     |                       | V     |
| I <sub>IL</sub>     | Low level input current              | V <sub>IL</sub> = 0 at INx                                                                                             | -25                       |     |                       | μA    |
| I <sub>IH</sub>     | High level input current             | V <sub>IH</sub> = V <sub>SI</sub> <sup>(1)</sup> at INx                                                                |                           |     | 25                    | μA    |
| V <sub>OH</sub>     | High level output voltage            | I <sub>O</sub> = -4 mA, see Switching Characteristics<br>Test Circuit and Voltage Waveforms                            | V <sub>SO</sub> (1) – 0.3 |     |                       | V     |
| V <sub>OL</sub>     | Low level output voltage             | I <sub>O</sub> = 4 mA, see Switching Characteristics Test<br>Circuit and Voltage Waveforms                             |                           |     | 0.3                   | V     |
| CMTI                | Common mode transient immunity       | V <sub>I</sub> = V <sub>SI</sub> or 0 V, V <sub>CM</sub> = 1000 V; see Common-<br>Mode Transient Immunity Test Circuit | 85                        | 100 |                       | kV/us |

<sup>(1)</sup>  $V_{SI}$  = input side supply;  $V_{SO}$  = output side supply

7.14 Supply Current Characteristics Channel Isolator -  $V_{IO}$ ,  $V_{ISOIN}$  = 3.3-V  $V_{IO}$ ,  $V_{ISOIN}$  = 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified)

| PARAMETER                | TEST CONDITION                                                                                 | s                                                          | SUPPLY<br>CURRENT  | MIN | TYP | MAX  | UNIT |
|--------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------|-----|-----|------|------|
| ISOW7721 Channel Supply  | Current                                                                                        |                                                            |                    |     |     |      |      |
|                          |                                                                                                |                                                            | I <sub>DD_IO</sub> |     | 3.5 | 6    | mA   |
| Supply current - Disable | EN_IO1 = EN_IO2 = 0 V; $V_I = V_{CCI}$ (ISOW7721); $V_I = 0$ V (ISOW7721 with F suffix)        |                                                            | I <sub>ISOIN</sub> |     | 3.5 | 5    | mA   |
| Supply current - Disable |                                                                                                |                                                            | I <sub>DD_IO</sub> |     | 3.5 | 6    | mA   |
|                          |                                                                                                |                                                            | I <sub>ISOIN</sub> |     | 3.5 | 5    | mA   |
|                          | EN_IO1 = EN_IO2 = $V_{CCI}$ ; $V_I = V_{CCI}$ (ISOW7721); $V_I = 0$ V (ISOW7721 with F suffix) |                                                            | I <sub>DD_IO</sub> |     | 3.5 | 6    | mA   |
| Channel Supply current - |                                                                                                |                                                            | I <sub>ISOIN</sub> |     | 3.5 | 5    | mA   |
| DC signal                | EN_IO1 = EN_IO2 = V <sub>CCI</sub> ; V <sub>I</sub> = 0 V (ISOW7721);                          |                                                            | I <sub>DD_IO</sub> |     | 4.5 | 7    | mA   |
|                          | $V_I = V_{CCI}$ (ISOW7721 with F suffix)                                                       | V <sub>I</sub> = V <sub>CCI</sub> (ISOW7721 with F suffix) |                    |     | 5   | 7    | mA   |
|                          |                                                                                                | 1 Mbps                                                     | I <sub>DD_IO</sub> |     | 4   | 6.5  | mA   |
|                          |                                                                                                | 1 MDPs                                                     | I <sub>ISOIN</sub> |     | 4   | 6    | mA   |
| Channel Supply current - | All channels switching with square                                                             | 10 Mbps                                                    | I <sub>DD_IO</sub> |     | 4.4 | 6.7  | mA   |
| AC signal                | wave clock input; C <sub>L</sub> = 15 pF                                                       | TO MIDPS                                                   | I <sub>ISOIN</sub> |     | 4.6 | 6.4  | mA   |
|                          |                                                                                                | 400 Mb = -                                                 | I <sub>DD_IO</sub> |     | 8.6 | 11.7 | mA   |
|                          |                                                                                                | 100 Mbps                                                   | I <sub>ISOIN</sub> |     | 8.7 | 11.4 | mA   |

(1)  $V_{CCI} = V_{IO} \text{ or } V_{ISOIN}$ 



# 7.15 Electrical Characteristics Channel Isolator - $V_{IO}$ , $V_{ISOIN}$ = 2.5-V

V<sub>IO</sub>, V<sub>ISOIN</sub> = 2.5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified)

|                     | PARAMETER                            | TEST CONDITIONS                                                                                                        | MIN                       | TYP | MAX                   | UNIT  |
|---------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|-----------------------|-------|
| Channel I           | solation                             |                                                                                                                        |                           |     |                       |       |
| V <sub>ITH</sub>    | Input pin rising threshold           |                                                                                                                        |                           |     | 0.7 x V <sub>SI</sub> | V     |
| $V_{ITL}$           | Input pin falling threshold          |                                                                                                                        | 0.3 x V <sub>SI</sub>     |     |                       | V     |
| V <sub>I(HYS)</sub> | Input pin threshold hysteresis (INx) |                                                                                                                        | 0.1 x V <sub>SI</sub>     |     |                       | V     |
| I <sub>IL</sub>     | Low level input current              | V <sub>IL</sub> = 0 at INx                                                                                             | -25                       |     |                       | μA    |
| I <sub>IH</sub>     | High level input current             | V <sub>IH</sub> = V <sub>SI</sub> <sup>(1)</sup> at INx                                                                |                           |     | 25                    | μA    |
| V <sub>OH</sub>     | High level output voltage            | I <sub>O</sub> = -4 mA, see Switching Characteristics<br>Test Circuit and Voltage Waveforms                            | V <sub>SO</sub> (1) – 0.1 |     |                       | V     |
| V <sub>OL</sub>     | Low level output voltage             | I <sub>O</sub> = 4 mA, see Switching Characteristics Test<br>Circuit and Voltage Waveforms                             |                           |     | 0.1                   | V     |
| CMTI                | Common mode transient immunity       | V <sub>I</sub> = V <sub>SI</sub> or 0 V, V <sub>CM</sub> = 1000 V; see Common-<br>Mode Transient Immunity Test Circuit | 85                        | 100 |                       | kV/us |

<sup>(1)</sup>  $V_{SI}$  = input side supply;  $V_{SO}$  = output side supply

7.16 Supply Current Characteristics Channel Isolator -  $V_{IO}$ ,  $V_{ISOIN}$  = 2.5-V  $V_{IO}$ ,  $V_{ISOIN}$  = 2.5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified)

| PARAMETER                | TEST CONDITION                                                                                                                               | s          | SUPPLY<br>CURRENT  | MIN | TYP | MAX | UNIT |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|-----|-----|-----|------|
| ISOW7721 Channel Supply  | / Current                                                                                                                                    |            |                    |     |     |     |      |
|                          |                                                                                                                                              |            | I <sub>DD_IO</sub> |     | 3.5 | 6   | mA   |
| Supply current - Disable | EN_IO1 = EN_IO2 = 0 V; $V_I = V_{CCI}$ (ISOW7721); $V_I = 0$ V (ISOW7721 with F suffix)                                                      |            | I <sub>ISOIN</sub> |     | 3.5 | 5   | mA   |
| Supply current - Disable |                                                                                                                                              |            | I <sub>DD_IO</sub> |     | 3.5 | 6   | mA   |
|                          |                                                                                                                                              |            | I <sub>ISOIN</sub> |     | 3.5 | 5   | mA   |
|                          | $\begin{split} & EN\_IO1 = EN\_IO2 = V_{CCI}; \ V_I = V_{CCI} \ (ISOW7721); \\ & V_I = 0 \ V \ (ISOW7721 \ with \ F \ suffix) \end{split}$   |            | I <sub>DD_IO</sub> |     | 3.5 | 6   | mA   |
| Channel Supply current - |                                                                                                                                              |            | I <sub>ISOIN</sub> |     | 3.5 | 5   | mA   |
| DC signal                | $\begin{aligned} &EN\_IO1 = EN\_IO2 = V_{CCI}; \ V_I = 0 \ V \ (ISOW7721); \\ &V_I = V_{CCI} \ (ISOW7721 \ with \ F \ suffix) \end{aligned}$ |            | I <sub>DD_IO</sub> |     | 4.5 | 7   | mA   |
|                          |                                                                                                                                              |            | I <sub>ISOIN</sub> |     | 5   | 7   | mA   |
|                          |                                                                                                                                              | 1 Mbps     | I <sub>DD_IO</sub> |     | 4   | 6   | mA   |
|                          |                                                                                                                                              | 1 MDPs     | I <sub>ISOIN</sub> |     | 4   | 6   | mA   |
| Channel Supply current - | All channels switching with square                                                                                                           | 10 Mbps    | I <sub>DD_IO</sub> |     | 4.3 | 6.5 | mA   |
| AC signal                | wave clock input; C <sub>L</sub> = 15 pF                                                                                                     | TO IVIDPS  | I <sub>ISOIN</sub> |     | 4.4 | 6.1 | mA   |
|                          |                                                                                                                                              | 400 Mh = - | I <sub>DD_IO</sub> | -   | 7.2 | 10  | mA   |
|                          |                                                                                                                                              | 100 Mbps   | I <sub>ISOIN</sub> |     | 7.4 | 9.7 | mA   |

<sup>(1)</sup>  $V_{CCI} = V_{IO} \text{ or } V_{ISOIN}$ 



## 7.17 Electrical Characteristics Channel Isolator - $V_{IO}$ , $V_{ISOIN}$ = 1.8-V

V<sub>IO</sub>, V<sub>ISOIN</sub> = 1.8 V ±5% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified)

|                     | PARAMETER                            | TEST CONDITIONS                                                                                                        | MIN                       | TYP | MAX                   | UNIT  |
|---------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|-----------------------|-------|
| Channel I           | solation                             |                                                                                                                        |                           |     |                       |       |
| V <sub>ITH</sub>    | Input pin rising threshold           |                                                                                                                        |                           |     | 0.7 x V <sub>SI</sub> | V     |
| V <sub>ITL</sub>    | Input pin falling threshold          |                                                                                                                        | 0.3 x V <sub>SI</sub>     |     |                       | V     |
| V <sub>I(HYS)</sub> | Input pin threshold hysteresis (INx) |                                                                                                                        | 0.1 x V <sub>SI</sub>     |     |                       | V     |
| I <sub>IL</sub>     | Low level input current              | V <sub>IL</sub> = 0 at INx                                                                                             | -25                       |     |                       | μA    |
| I <sub>IH</sub>     | High level input current             | V <sub>IH</sub> = V <sub>SI</sub> <sup>(1)</sup> at INx                                                                |                           |     | 25                    | μA    |
| V <sub>OH</sub>     | High level output voltage            | I <sub>O</sub> = -4 mA, see Switching Characteristics<br>Test Circuit and Voltage Waveforms                            | V <sub>SO</sub> (1) – 0.1 |     |                       | V     |
| V <sub>OL</sub>     | Low level output voltage             | I <sub>O</sub> = 4 mA, see Switching Characteristics Test<br>Circuit and Voltage Waveforms                             |                           |     | 0.1                   | V     |
| CMTI                | Common mode transient immunity       | V <sub>I</sub> = V <sub>SI</sub> or 0 V, V <sub>CM</sub> = 1000 V; see Common-<br>Mode Transient Immunity Test Circuit | 85                        | 100 |                       | kV/us |

<sup>(1)</sup>  $V_{SI}$  = input side supply;  $V_{SO}$  = output side supply

# 7.18 Supply Current Characteristics Channel Isolator - $V_{IO}$ , $V_{ISOIN}$ = 1.8-V

V<sub>IO</sub>, V<sub>ISOIN</sub> = 1.8 V ±5% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified)

| PARAMETER                | TEST CONDITION                                                                                                                                 | s                         | SUPPLY<br>CURRENT  | MIN | TYP | MAX | UNIT |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|-----|-----|-----|------|
| ISOW7721 Channel Supply  | Current                                                                                                                                        |                           |                    |     |     |     |      |
|                          | EN_IO1 = EN_IO2 = 0 V; V <sub>I</sub> = V <sub>CCI</sub> (                                                                                     | <sup>1)</sup> (ISOW7721); | I <sub>DD_IO</sub> |     | 3.5 | 6   | mA   |
| Supply current - Disable | $V_I = 0 \text{ V (ISOW7721 with F suffix)}$                                                                                                   |                           | I <sub>ISOIN</sub> |     | 3.5 | 5   | mA   |
| Supply current - Disable | EN_IO1 = EN_IO2 = 0 V; V <sub>I</sub> = 0 V (ISOW7721);                                                                                        |                           | I <sub>DD_IO</sub> |     | 3.5 | 6   | mA   |
|                          | $V_I = V_{CCI}$ (ISOW7721 with F suffix)                                                                                                       |                           | I <sub>ISOIN</sub> |     | 3.5 | 5   | mA   |
|                          | $\begin{aligned} & EN\_IO1 = EN\_IO2 = V_{CCI}; \ V_I = V_{CCI} \ (ISOW7721); \\ & V_I = 0 \ V \ (ISOW7721 \ with \ F \ suffix) \end{aligned}$ |                           | I <sub>DD_IO</sub> |     | 3.5 | 6   | mA   |
| Channel Supply current - |                                                                                                                                                |                           | I <sub>ISOIN</sub> |     | 3.5 | 5   | mA   |
| DC signal                | $\begin{aligned} &EN\_IO1 = EN\_IO2 = V_{CCI}; \ V_I = 0 \ V \ (ISOW7721); \\ &V_I = V_{CCI} \ (ISOW7721 \ with \ F \ suffix) \end{aligned}$   |                           | I <sub>DD_IO</sub> |     | 4.5 | 7   | mA   |
|                          |                                                                                                                                                |                           | I <sub>ISOIN</sub> |     | 5   | 6   | mA   |
|                          |                                                                                                                                                | 1 Mbps                    | I <sub>DD_IO</sub> |     | 4   | 6   | mA   |
|                          |                                                                                                                                                | 1 Mbps                    | I <sub>ISOIN</sub> |     | 3.5 | 5   | mA   |
| Channel Supply current - | All channels switching with square                                                                                                             | 10 Mbps                   | I <sub>DD_IO</sub> |     | 4.3 | 6.5 | mA   |
| AC signal                | wave clock input; C <sub>L</sub> = 15 pr                                                                                                       | TO MIDPS                  | I <sub>ISOIN</sub> |     | 4.4 | 6.1 | mA   |
|                          |                                                                                                                                                | 100 Mbno                  | I <sub>DD_IO</sub> | -   | 6.7 | 9.1 | mA   |
|                          |                                                                                                                                                | 100 Mbps                  | I <sub>ISOIN</sub> |     | 6.9 | 8.8 | mA   |

(1)  $V_{CCI} = V_{IO} \text{ or } V_{ISOIN}$ 



## 7.19 Switching Characteristics - 5-V Supply

 $V_{ISOIN}$  = 5 V ±10%,  $V_{IO}$  = 5 V ±10%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless otherwise noted)

|                                                  | PARAMETER                                                                                  | TEST CONDITIONS                                                                                                                                             | MIN | TYP  | MAX   | UNIT |
|--------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-------|------|
| t <sub>PLH</sub> , t <sub>PHL</sub>              | Propagation delay time                                                                     | See Switching Characteristics Test                                                                                                                          | 7.6 | 10.7 | 15.7  | ns   |
| PWD                                              | Pulse width distortion <sup>(1)</sup>  t <sub>PHL</sub> - t <sub>PLH</sub>                 | Circuit and Voltage Waveforms                                                                                                                               |     | 0.9  | 5     | ns   |
| ENIO_t <sub>PLH</sub> ,<br>ENIO_t <sub>PHL</sub> | ENIO propagation delay time (opposite side)                                                | See Enable/Disable Propagation Delay<br>Time Test Circuit and Waveform                                                                                      |     | 210  | 473.8 | ns   |
| t <sub>sk(o)</sub>                               | Channel-to-channel output skew time <sup>(2)</sup>                                         | Same-direction channels                                                                                                                                     |     |      | 4     | ns   |
| t <sub>sk(pp)</sub>                              | Part-to-part skew time <sup>(3)</sup>                                                      |                                                                                                                                                             |     |      | 5.5   | ns   |
| t <sub>r</sub>                                   | Output signal rise time                                                                    | See Switching Characteristics Test                                                                                                                          |     | 2.5  | 3.6   | ns   |
| t <sub>f</sub>                                   | Output signal fall time                                                                    | Circuit and Voltage Waveforms                                                                                                                               |     | 2.4  | 3.5   | ns   |
| t <sub>PHZ</sub>                                 | Channel disable propagation delay, high-to-high impedance output                           |                                                                                                                                                             |     | 217  | 286   | ns   |
| t <sub>PLZ</sub>                                 | Channel disable propagation delay, low-to-high impedance output                            |                                                                                                                                                             |     | 217  | 286   | ns   |
|                                                  | Channel enable propagation delay, high impedance-to-high output for ISOW7721               | See Enable/Disable Propagation Delay                                                                                                                        |     | 237  | 333   | ns   |
| t <sub>PZH</sub>                                 | Channel enable propagation delay, high impedance-to-high output for ISOW7721 with F suffix | Time Test Circuit and Waveform                                                                                                                              |     | 237  | 333   | ns   |
|                                                  | Channel enable propagation delay, high impedance-to-low output for ISOW7721                |                                                                                                                                                             |     | 237  | 333   | ns   |
| t <sub>PZL</sub>                                 | Channel enable propagation delay, high impedance-to-low output for ISOW7721 with F suffix  |                                                                                                                                                             |     | 237  | 333   | ns   |
| t <sub>DO</sub>                                  | Default output delay time from input power loss                                            | Measured from the time V <sub>IO</sub> or V <sub>ISOIN</sub> goes below 1.6 V at 10 mV/ns. See Default Output Delay Time Test Circuit and Voltage Waveforms |     | 0.1  | 0.3   | μs   |
| t <sub>ie</sub>                                  | Time interval error                                                                        | 2 <sup>16</sup> – 1 PRBS data at 100 Mbps                                                                                                                   |     | 0.7  |       | ns   |

<sup>(1)</sup> Also known as pulse skew.

<sup>(2)</sup>  $t_{sk(o)}$  is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

<sup>(3)</sup> t<sub>sk(pp)</sub> is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.



## 7.20 Switching Characteristics - 3.3-V Supply

 $V_{ISOIN}$  = 3.3 V ±10%,  $V_{IO}$  = 3.3 V ±10%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless otherwise noted)

| PARAMETER                                        |                                                                                            | TEST CONDITIONS                                                                                                                                             | MIN | TYP  | MAX   | UNIT |
|--------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-------|------|
| t <sub>PLH</sub> , t <sub>PHL</sub>              | Propagation delay time                                                                     | See Switching Characteristics Test                                                                                                                          | 6   | 11   | 16.2  | ns   |
| PWD                                              | Pulse width distortion <sup>(1)</sup>  t <sub>PHL</sub> - t <sub>PLH</sub>                 | Circuit and Voltage Waveforms                                                                                                                               |     | 0.6  | 4.7   | ns   |
| ENIO_t <sub>PLH</sub> ,<br>ENIO_t <sub>PHL</sub> | ENIO propagation delay time (opposite side)                                                | See Enable/Disable Propagation Delay<br>Time Test Circuit and Waveform                                                                                      |     | 220  | 474   | ns   |
| t <sub>sk(o)</sub>                               | Channel-to-channel output skew time <sup>(2)</sup>                                         | Same-direction channels                                                                                                                                     |     |      | 4.1   | ns   |
| t <sub>sk(pp)</sub>                              | Part-to-part skew time <sup>(3)</sup>                                                      |                                                                                                                                                             |     |      | 4.5   | ns   |
| t <sub>r</sub>                                   | Output signal rise time                                                                    | See Switching Characteristics Test                                                                                                                          |     | 1.8  | 2.7   | ns   |
| t <sub>f</sub>                                   | Output signal fall time                                                                    | Circuit and Voltage Waveforms                                                                                                                               |     | 1.6  | 2.4   | ns   |
| t <sub>PHZ</sub>                                 | Channel disable propagation delay, high-to-high impedance output                           |                                                                                                                                                             |     | 230  | 300.4 | ns   |
| t <sub>PLZ</sub>                                 | Channel disable propagation delay, low-to-high impedance output                            |                                                                                                                                                             |     | 230  | 299.6 | ns   |
| t <sub>PZH</sub>                                 | Channel enable propagation delay, high impedance-to-high output for ISOW7721               | See Enable/Disable Propagation Delay                                                                                                                        |     | 226  | 318.9 | ns   |
|                                                  | Channel enable propagation delay, high impedance-to-high output for ISOW7721 with F suffix | Time Test Circuit and Waveform                                                                                                                              |     | 226  | 319.1 | ns   |
|                                                  | Channel enable propagation delay, high impedance-to-low output for ISOW7721                |                                                                                                                                                             |     | 225  | 317.9 | ns   |
|                                                  | Channel enable propagation delay, high impedance-to-low output for ISOW7721 with F suffix  |                                                                                                                                                             |     | 225  | 317.6 | ns   |
| t <sub>DO</sub>                                  | Default output delay time from input power loss                                            | Measured from the time V <sub>IO</sub> or V <sub>ISOIN</sub> goes below 1.6 V at 10 mV/ns. See Default Output Delay Time Test Circuit and Voltage Waveforms |     | 0.1  | 0.3   | μs   |
| t <sub>ie</sub>                                  | Time interval error                                                                        | 2 <sup>16</sup> – 1 PRBS data at 100 Mbps                                                                                                                   |     | 0.65 |       | ns   |

<sup>(1)</sup> Also known as pulse skew.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

<sup>(2)</sup>  $t_{sk(o)}$  is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

<sup>(3)</sup>  $t_{sk(pp)}$  is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.



## 7.21 Switching Characteristics - 2.5-V Supply

 $V_{ISOIN}$  = 2.5 V ±10%,  $V_{IO}$  = 2.5 V ±10%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless otherwise noted)

| PARAMETER                                        |                                                                                            | TEST CONDITIONS                                                                                                                                             | MIN | TYP  | MAX  | UNIT |
|--------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|------|
| t <sub>PLH</sub> , t <sub>PHL</sub>              | Propagation delay time                                                                     | See Switching Characteristics Test                                                                                                                          | 7.5 | 12   | 18   | ns   |
| PWD                                              | Pulse width distortion <sup>(1)</sup>  t <sub>PHL</sub> - t <sub>PLH</sub>                 | Circuit and Voltage Waveforms                                                                                                                               |     | 0.36 | 5.1  | ns   |
| ENIO_t <sub>PLH</sub> ,<br>ENIO_t <sub>PHL</sub> | ENIO propagation delay time (opposite side)                                                | See Enable/Disable Propagation Delay<br>Time Test Circuit and Waveform                                                                                      |     | 225  | 478  | ns   |
| t <sub>sk(o)</sub>                               | Channel-to-channel output skew time <sup>(2)</sup>                                         | Same-direction channels                                                                                                                                     |     |      | 4.1  | ns   |
| t <sub>sk(pp)</sub>                              | Part-to-part skew time <sup>(3)</sup>                                                      |                                                                                                                                                             |     |      | 6    | ns   |
| t <sub>r</sub>                                   | Output signal rise time                                                                    | See Switching Characteristics Test                                                                                                                          |     | 2    | 3.26 | ns   |
| t <sub>f</sub>                                   | Output signal fall time                                                                    | Circuit and Voltage Waveforms                                                                                                                               |     | 1.8  | 3.2  | ns   |
| t <sub>PHZ</sub>                                 | Channel disable propagation delay, high-to-high impedance output                           |                                                                                                                                                             |     | 237  | 326  | ns   |
| t <sub>PLZ</sub>                                 | Channel disable propagation delay, low-to-high impedance output                            |                                                                                                                                                             |     | 236  | 325  | ns   |
| t <sub>PZH</sub>                                 | Channel enable propagation delay, high impedance-to-high output for ISOW7721               | See Enable/Disable Propagation Delay                                                                                                                        |     | 228  | 360  | ns   |
|                                                  | Channel enable propagation delay, high impedance-to-high output for ISOW7721 with F suffix | Time Test Circuit and Waveform                                                                                                                              |     | 228  | 360  | ns   |
|                                                  | Channel enable propagation delay, high impedance-to-low output for ISOW7721                |                                                                                                                                                             |     | 227  | 350  | ns   |
|                                                  | Channel enable propagation delay, high impedance-to-low output for ISOW7721 with F suffix  |                                                                                                                                                             |     | 227  | 350  | ns   |
| t <sub>DO</sub>                                  | Default output delay time from input power loss                                            | Measured from the time V <sub>IO</sub> or V <sub>ISOIN</sub> goes below 1.6 V at 10 mV/ns. See Default Output Delay Time Test Circuit and Voltage Waveforms |     | 0.1  | 0.3  | μs   |
| t <sub>ie</sub>                                  | Time interval error                                                                        | 2 <sup>16</sup> – 1 PRBS data at 100 Mbps                                                                                                                   |     | 0.7  |      | ns   |

<sup>(1)</sup> Also known as pulse skew.

<sup>(2)</sup>  $t_{sk(o)}$  is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

<sup>(3)</sup>  $t_{sk(pp)}$  is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.



## 7.22 Switching Characteristics - 1.8-V Supply

 $V_{ISOIN}$  = 1.8 V ±5%,  $V_{IO}$  = 1.8 V ±5%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless otherwise noted)

| PARAMETER                                        |                                                                                            | TEST CONDITIONS                                                                                                                                             | MIN | TYP | MAX  | UNIT |
|--------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|------|
| t <sub>PLH</sub> , t <sub>PHL</sub>              | Propagation delay time                                                                     | See Switching Characteristics Test                                                                                                                          | 7.5 | 15  | 21.5 | ns   |
| PWD                                              | Pulse width distortion <sup>(1)</sup>  t <sub>PHL</sub> - t <sub>PLH</sub>                 | Circuit and Voltage Waveforms                                                                                                                               |     | 0   | 5.8  | ns   |
| ENIO_t <sub>PLH</sub> ,<br>ENIO_t <sub>PHL</sub> | ENIO propagation delay time (opposite side)                                                | See Enable/Disable Propagation Delay<br>Time Test Circuit and Waveform                                                                                      |     | 243 | 475  | ns   |
| t <sub>sk(o)</sub>                               | Channel-to-channel output skew time <sup>(2)</sup>                                         | Same-direction channels                                                                                                                                     |     |     | 4.1  | ns   |
| t <sub>sk(pp)</sub>                              | Part-to-part skew time <sup>(3)</sup>                                                      |                                                                                                                                                             |     |     | 8.6  | ns   |
| t <sub>r</sub>                                   | Output signal rise time                                                                    | See Switching Characteristics Test                                                                                                                          |     | 1.9 | 3    | ns   |
| t <sub>f</sub>                                   | Output signal fall time                                                                    | Circuit and Voltage Waveforms                                                                                                                               |     | 1.8 | 3    | ns   |
| t <sub>PHZ</sub>                                 | Channel disable propagation delay, high-to-high impedance output                           |                                                                                                                                                             |     | 260 | 410  | ns   |
| t <sub>PLZ</sub>                                 | Channel disable propagation delay, low-to-high impedance output                            |                                                                                                                                                             |     | 260 | 406  | ns   |
| t <sub>PZH</sub>                                 | Channel enable propagation delay, high impedance-to-high output for ISOW7721               | See Enable/Disable Propagation Delay                                                                                                                        |     | 240 | 444  | ns   |
|                                                  | Channel enable propagation delay, high impedance-to-high output for ISOW7721 with F suffix | Time Test Circuit and Waveform                                                                                                                              |     | 240 | 444  | ns   |
|                                                  | Channel enable propagation delay, high impedance-to-low output for ISOW7721                |                                                                                                                                                             |     | 237 | 439  | ns   |
|                                                  | Channel enable propagation delay, high impedance-to-low output for ISOW7721 with F suffix  |                                                                                                                                                             |     | 237 | 439  | ns   |
| t <sub>DO</sub>                                  | Default output delay time from input power loss                                            | Measured from the time V <sub>IO</sub> or V <sub>ISOIN</sub> goes below 1.6 V at 10 mV/ns. See Default Output Delay Time Test Circuit and Voltage Waveforms |     | 0.1 | 0.3  | μs   |
| t <sub>ie</sub>                                  | Time interval error                                                                        | 2 <sup>16</sup> – 1 PRBS data at 100 Mbps                                                                                                                   |     | 0.7 |      | ns   |

<sup>(1)</sup> Also known as pulse skew.

Product Folder Links: ISOW7721

<sup>(2)</sup>  $t_{sk(o)}$  is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

<sup>(3)</sup> t<sub>sk(pp)</sub> is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

## 7.23 Insulation Characteristics Curves

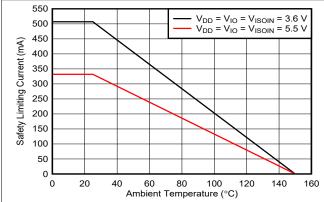
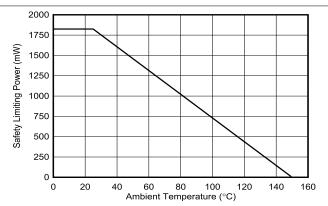
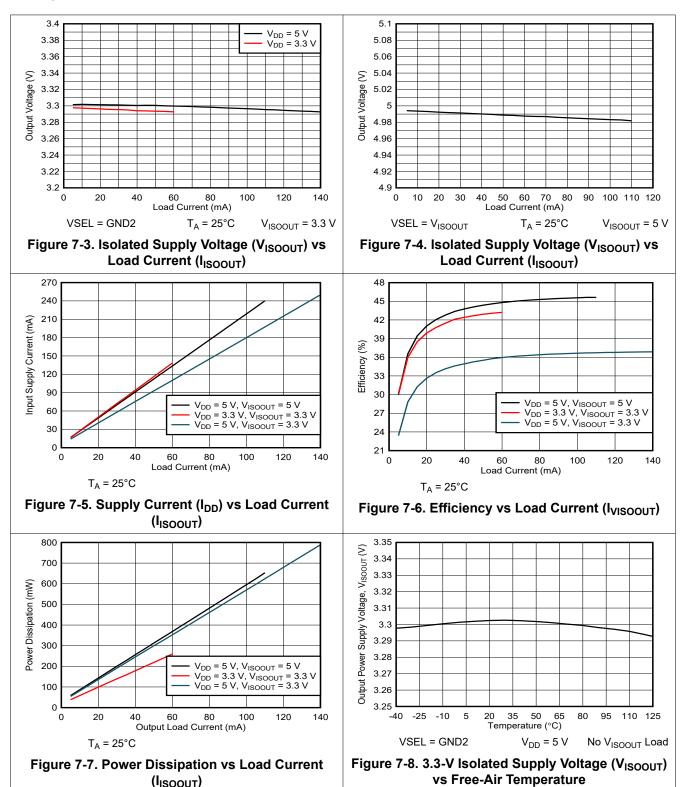
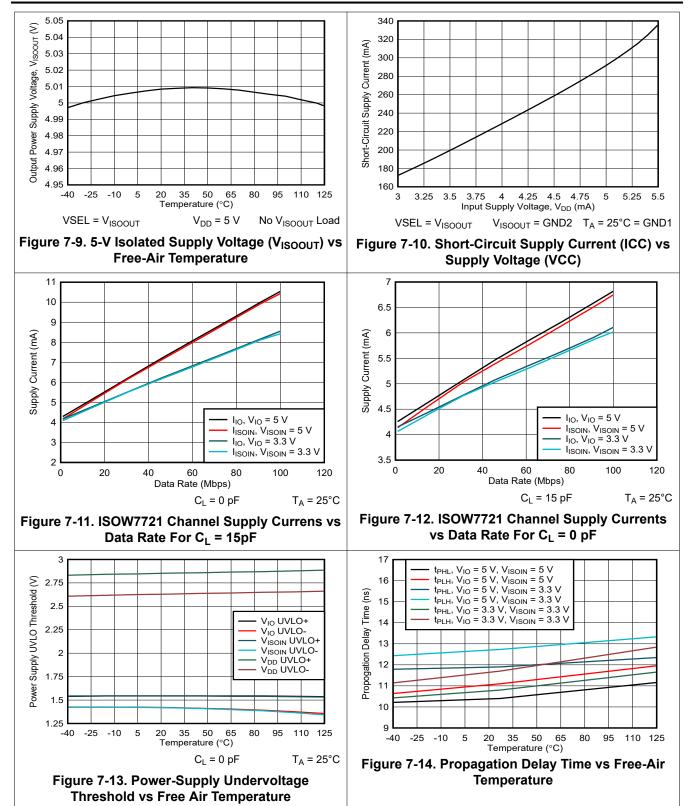
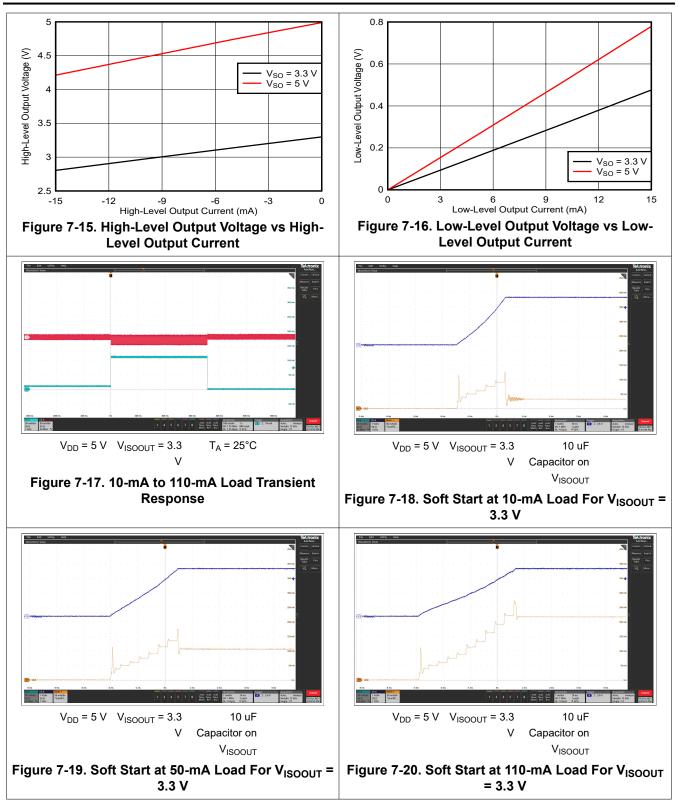



Figure 7-1. Thermal Derating Curve for Safety Limiting Current for DFM-20 Package

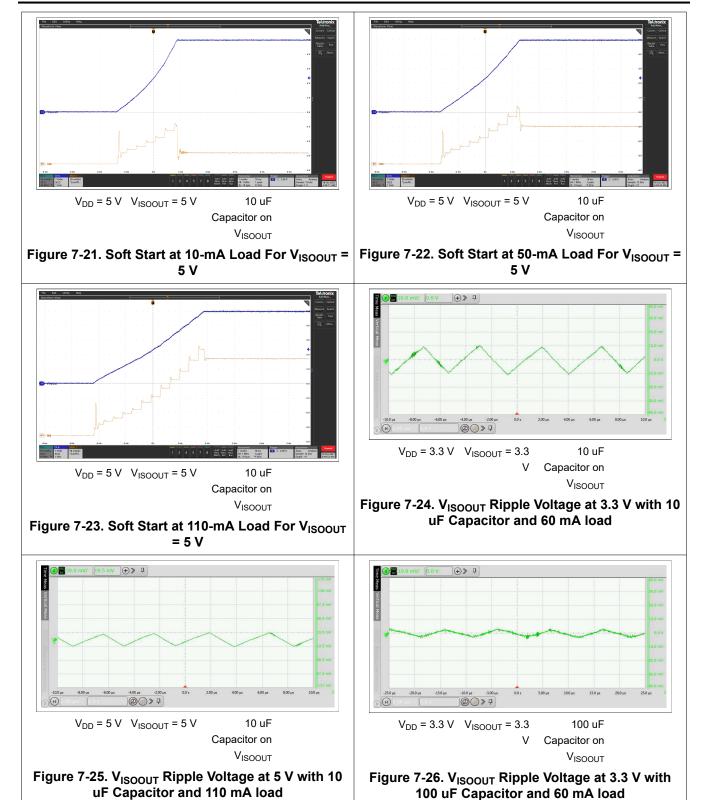





Figure 7-2. Thermal Derating Curve for Safety Limiting Power for DFM-20 Package




## 7.24 Typical Characteristics

















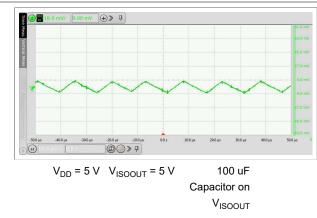




Figure 7-27. V<sub>ISOOUT</sub> Ripple Voltage at 5 V with 100 uF Capacitor and 110 mA load

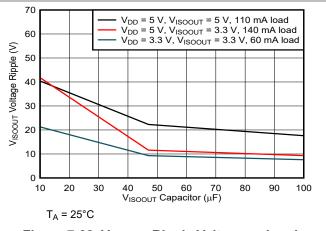
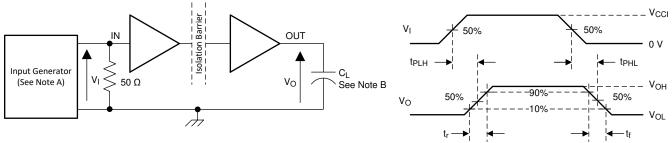
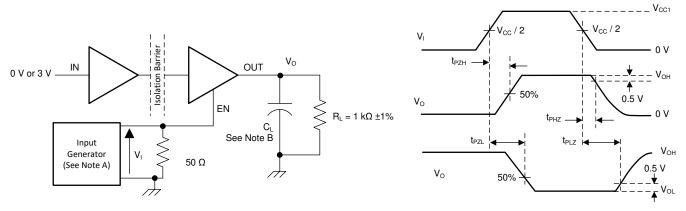




Figure 7-28. V<sub>ISOOUT</sub> Ripple Voltage vs Load Capacitor



## **8 Parameter Measurement Information**


In the below images,  $V_{CCI}$  and  $V_{CCO}$  refers to the power supplies  $V_{IO}$  and  $V_{ISOIN}$ , respectively.



Copyright © 2016, Texas Instruments Incorporated

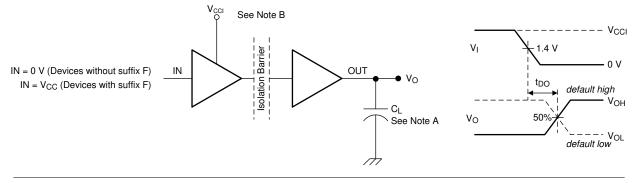

- A.  $C_L = 15$  pF and The input pulse is supplied by a generator having the following characteristics: PRR  $\leq$  50 kHz, 50% duty cycle,  $t_r \leq$  3 ns,  $t_f \leq$  3ns,  $t_f \leq$  3ns,
- B. B.  $C_L$  = 15 pF and includes instrumentation and fixture capacitance within ±20%.

Figure 8-1. Switching Characteristics Test Circuit and Voltage Waveforms

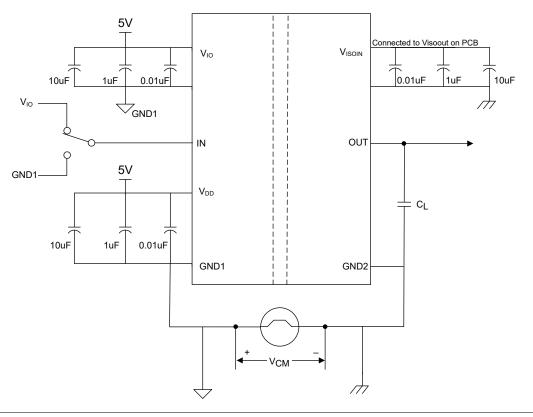


- A. A. The input pulse is supplied by a generator having the following characteristics: PRR  $\leq$  50 kHz, 50% duty cycle,  $t_r \leq$  3 ns,  $t_f \leq$  3ns,  $Z_O = 50 \Omega$ . At the input, 50  $\Omega$  resistor is required to terminate Input Generator signal. It is not needed in actual application.
- B. B.  $C_L = 15$  pF and includes instrumentation and fixture capacitance within  $\pm 20\%$ .

Figure 8-2. Enable/Disable Propagation Delay Time Test Circuit and Waveform



Note


A.  $C_L$  = 15 pF and includes instrumentation and fixture capacitance within ±20%.



### Note

B. Power Supply Ramp Rate = 10 mV/ns.

Figure 8-3. Default Output Delay Time Test Circuit and Voltage Waveforms



Note

C<sub>L</sub> = 15 pF and includes instrumentation and fixture capacitance within ±20%.

Note

Pass-fail criteria: Outputs must remain stable.

Figure 8-4. Common-Mode Transient Immunity Test Circuit

Submit Document Feedback



## 9 Detailed Description

#### 9.1 Overview

The ISOW7721 family of devices have a low-noise, low-emissions isolated DC-DC converter, and two high-speed isolated data channels. Section 9.2 shows the functional block diagram of the ISOW7721 device.

#### 9.1.1 Power Isolation

The integrated isolated DC-DC converter uses advanced circuit and on-chip layout techniques to reduce radiated emissions and achieve up to 46% typical efficiency. The integrated transformer uses thin film polymer as the insulation barrier. Output voltage of power converter can be controlled to 3.3 V or 5 V using  $V_{SEL}$  pin. The DC-DC converter can be switched off using the EN pin to save power. The output voltage,  $V_{ISOOUT}$ , is monitored and feedback information is conveyed to the primary side through a dedicated isolation channel.  $V_{ISOOUT}$  needs to be connected to  $V_{ISOIN}$  to ensure the feedback channel is properly powered to regulate the DC-DC converter. This can be achieved by connecting the pins directly or through an LDO that remains powered up at all times. A ferrite bead is recommended between  $V_{ISOOUT}$  and  $V_{ISOIN}$  to further reduce emissions. See the Section 10.2 section. The duty cycle of the primary switching stage is adjusted accordingly. The fast feedback control loop of the power converter ensures low overshoots and undershoots during load transients. Undervoltage lockout (UVLO) with hysteresis is integrated on the  $V_{IO}$ ,  $V_{DD}$  and  $V_{ISOIN}$  supplies which ensures robust fails-safe system performance under noisy conditions. An integrated soft-start mechanism ensures controlled inrush current and avoids any overshoot on the output during power up.

## 9.1.2 Signal Isolation

The integrated signal isolation channels employ an ON-OFF keying (OOK) modulation scheme to transmit the digital data across a silicon-dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to represent one state and sends no signal to represent the other state. The receiver demodulates the signal after signal conditioning and produces the output through a buffer stage. The signal-isolation channels incorporate advanced circuit techniques to maximize the CMTI performance and minimize the radiated emissions from the high frequency carrier and IO buffer switching. Figure 9-1 shows a functional block diagram of a typical signal isolation channel. In order to keep any noise coupling from the power converter away from the signal path, power supplies on side 1 for the power converter ( $V_{DD}$ ) and the signal path( $V_{IO}$ ) are kept separate. Similarly on side 2, the power converter output ( $V_{ISOOUT}$ ) needs to be connected to  $V_{ISOIN}$  externally on PCB. Emissions can be further improved by placing a ferrite bead between  $V_{ISOOUT}$  and  $V_{ISOIN}$  as well as between the GND2 pins. For more details, refer to the Layout Guidelines section.



## 9.2 Functional Block Diagram

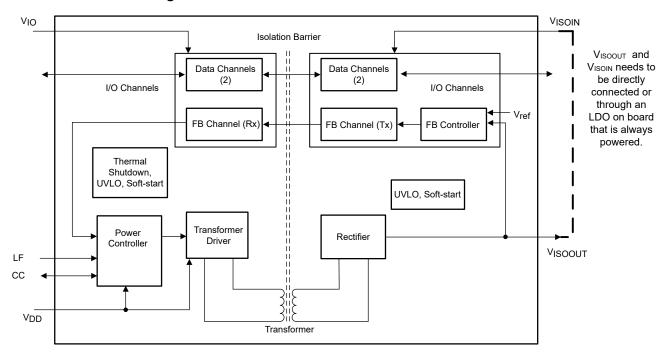



Figure 9-1. Block Diagram

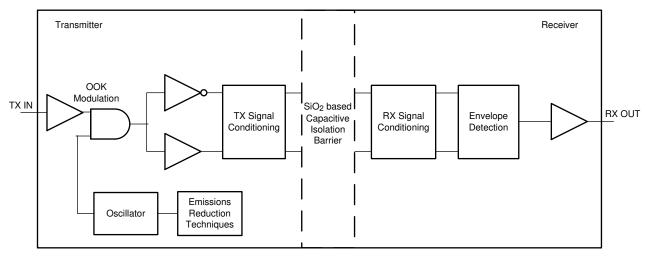



Figure 9-2. Conceptual Block Diagram of a Capacitive Data Channel

Figure 9-3 shows a conceptual detail of how the OOK scheme works.

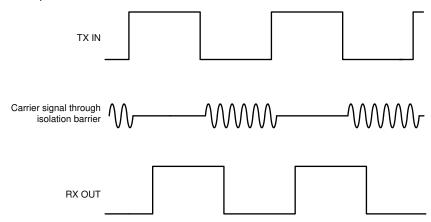



Figure 9-3. On-Off Keying (OOK) Based Modulation Scheme

## 9.3 Feature Description

Device Features shows an overview of the device features.

| PART NUMBER <sup>(1)</sup> | CHANNEL DIRECTION    | MAXIMUM DATA RATE | DEFAULT OUTPUT<br>STATE | RATED ISOLATION(2)                         |  |
|----------------------------|----------------------|-------------------|-------------------------|--------------------------------------------|--|
| ISOW7721                   | 1 forward, 1 reverse | 100 Mbps High     |                         | 5 kV <sub>RMS</sub> / 7071 V <sub>PK</sub> |  |
| ISOW7721 with F suffix     | 1 lorward, Treverse  | 100 Mibbs         | Low                     | 3 KVRMS / 1011 VPK                         |  |

**Table 9-1. Device Features** 

- (1) The F suffix is part of the orderable part number. See the Section 14 section for the full orderable part number.
- (2) For detailed isolation ratings, see the Section 7.7 table.

#### 9.3.1 Electromagnetic Compatibility (EMC) Considerations

The ISOW7721 uses emissions reduction schemes for the internal oscillator and advanced internal layout scheme to minimize radiated emissions at the system level.

Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge (ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances are regulated by international standards such as IEC 61000-4-x and CISPR 32. Although system-level performance and reliability depends, to a large extent, on the application board design and layout, the ISOW7721 incorporates many chip-level design improvements for overall system robustness. Some of these improvements include:

- Robust ESD protection cells for input and output signal pins and inter-chip bond pads.
- Low-resistance connectivity of ESD cells to supply and ground pins.
- Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.
- Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance path.
- PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic SCRs.
- Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.
- Power path and signal path separated to minimize internal high frequency coupling and an external filtering knob using ferrite beads available to further reduce emissions
- Reduced power converter switching frequency to 25 MHz to reduce strength of high frequency components in emissions spectrum

## 9.3.2 Power-Up and Power-Down Behavior

The ISOW7721 has built-in UVLO on the  $V_{IO}$ ,  $V_{DD}$ , and  $V_{ISOIN}$  supplies with positive-going and negative-going thresholds and hysteresis. Both the power converter supply (VDD) and logic supply (VIO) need to be present



for the device to work. If either of them is below its UVLO, both the signal path and the power converter are disabled.

When the  $V_{DD}$  voltage crosses the positive-going UVLO threshold during power-up, the DC-DC converter initializes and the power converter duty cycle is increased in a controlled manner. This soft-start scheme limits primary peak currents drawn from the  $V_{DD}$  supply and charges the  $V_{ISOOUT}$  output in a controlled manner, avoiding overshoots. Outputs of the isolated data channels are in an indeterminate state until the  $V_{IO}$  and  $V_{DD}$  voltage crosses the positive-going UVLO threshold. When the UVLO positive-going threshold is crossed on the secondary side  $V_{ISOOUT}$  pin, the feedback data channel starts providing feedback to the primary controller. The regulation loop takes over and the isolated data channels go to the normal state defined by the respective input channels or their default states. Design should consider a sufficient time margin (typically 10 ms with 10-µF load capacitance) to allow this power up sequence before valid data channels are accounted for system functionality.

When either  $V_{IO}$  or  $V_{DD}$  power is lost, the primary side DC-DC controller turns off when the UVLO lower threshold is reached. The  $V_{ISOOUT}$  capacitor then discharges depending on the external load. The isolated data outputs on the  $V_{ISOIN}$  side are returned to the default state for the brief time that the  $V_{ISOIN}$  voltage takes to discharge to zero.

#### 9.3.3 Protection Features

The ISOW7721 has multiple protection features to create a robust system level solution.

- An over-voltage clamp feature is present on V<sub>ISOOUT</sub> which will clamp the voltage at 6 V, when VSEL = V<sub>ISOOUT</sub>, or 4 V, when VSEL = GND2, if there is an increase in voltage seen on V<sub>ISOOUT</sub>. It is recommended that the V<sub>ISOOUT</sub> stays lower than the over-clamp voltage for device reliability.
- Over-voltage lock out on V<sub>DD</sub> will occur when a voltage higher than 7 V is seen. The device will go into a low power state and the EN pin will go low.
- The device is protected against output overload and short circuit. Output voltage starts dropping when the
  power converter is not able to deliver the current demanded during overload conditions. For a V<sub>ISOOUT</sub>
  short-circuit to ground, the duty cycle of the converter is limited to help protect against any damage.
- Thermal protection is also integrated to help prevent the device from getting damaged during overload and short-circuit conditions on the isolated output. Under these conditions, the device temperature starts to increase. When the temperature goes above 165°C, thermal shutdown activates and the primary controller turns off which removes the energy supplied to the V<sub>ISOOUT</sub> load, which causes the device to cool off. When the junction temperature goes below 150°C, the device starts to function normally. If an overload or output short-circuit condition prevails, this protection cycle is repeated. Care should be taken in the design to prevent the device junction temperatures from reaching such high values.

#### 9.3.4 Multi-Device Chaining for Increased Power Output

The ISOW7721 supports daisy chaining multiple ISOW7721 devices to achive > 110 mA load as shown in Figure 9-4. The below equation provides an estimate for the required number of ISOW7721 devices to meet a target load current

$$Number\ of\ device = ceil \left[ \frac{Target\ load\ current\ -\ Maxiumum\ available\ load\ current}{0.8\ Maxiumum\ available\ load\ current} + 1 \right]$$

## Example:

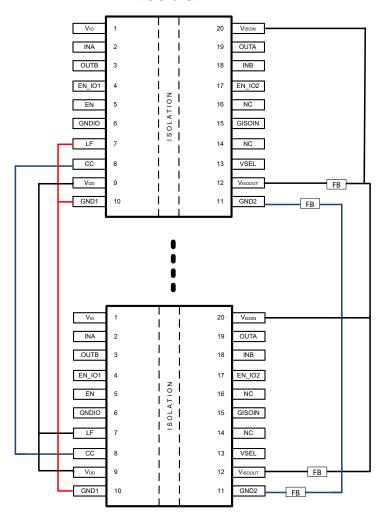
Design a multi-device chaning using ISOW7721 to drive a 680 mA load for V<sub>DD</sub> = 5 V and VSEL = 5 V.

The Maximum available load current for  $V_{DD} = 5 \text{ V}$ , and VSEL = 5 V is 100 mA from page 1.

Number of device = 
$$ceil \left| \frac{680 - 110}{0.8 (110)} + 1 \right| = 8$$

From the above calculation, we need 8 ISOW7721 to drive a 680 mA load.

Follow the procedures below to configure multi-device chaining.


1. Set LF to GND1 to make a device as the leader of the daisy chain (only one leader is allowed in a daisy chain). The CC pin of the leader is configured as an output

www.ti.com SLLSFP4 - JULY 2022

- 2. Set LF to V<sub>DD</sub> to make the other device as a follower (may use more than one follower to meet your system current requirement). The CC pin of the follower is configured as an input.
- 3. A voltage change on the LF pin requires a power cycling to put the device into the desired role. Please ensure that all devices are powered during multi-device chaining operation to prevent the VISOOUT pin of an unpowered device from exposing to an overvoltage condition. An unpowered device can cause the VSEL to set to GND and thus the maximum rating for its VISOOUT is 4 V. Device damage is possible if this VISOOUT pin is driven by another 5 V VISOOUT pin for an extensive long time.
- 4. Connect the CC pin of the leader to the CC pin of the follower (may use more than one follower) and this will allow the leader to synchronize with the follower.
- 5. Connect all the VISOOUT pins and VISOIN pins together for the leader and the follower(s).
- 6. Connect all the GISOUT pins together for the leader and the follower(s).
- 7. Connect all the V<sub>DD</sub> pins together for the leader and the follower(s).
- 8. All the VSEL pins should be set to the same logic state.



# Leader



Follower

Figure 9-4. Multi-Device Chaining

#### 9.4 Device Functional Modes

Table 9-2 lists the supply configurations for these devices.

**Table 9-2. Supply Configuration Function Table** 

| V <sub>DD</sub>          | V <sub>IO</sub>          | VSEL                                   | V <sub>ISOOUT</sub> <sup>(2)</sup> |
|--------------------------|--------------------------|----------------------------------------|------------------------------------|
| < V <sub>DD(UVLO+)</sub> | >V <sub>IO(UVLO+)</sub>  | X                                      | OFF                                |
| >V <sub>DD(UVLO+)</sub>  | <v<sub>IO(UVLO+)</v<sub> | X                                      | OFF                                |
| 5 V                      | 1.71 V to 5.5 V          | High (shorted to V <sub>ISOOUT</sub> ) | 5 V                                |
| 5 V or 3.3 V             | 1.71 V to 5.5 V          | Low (shorted to GND2) <sup>(1)</sup>   | 3.3 V                              |

<sup>(1)</sup> The VSEL pin has a weak pulldown internally. Therefore for V<sub>ISOOUT</sub> = 3.3 V, the VSEL pin should be strongly connected to the GND2 pin in noisy system scenarios.

Table 9-3 lists the channel isolators functional modes for these devices.

**Table 9-3. Channel Isolator Function Table** 

|                                                 | CHANNEL                                             |             |                       |                  |                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------|-----------------------------------------------------|-------------|-----------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHANNEL INPUT<br>SUPPLY (V <sub>CCI</sub> ) (1) | OUTPUT<br>SUPPLY (V <sub>CCO</sub> ) <sup>(1)</sup> | INPUT (INx) | IO ENABLE<br>(EN_IOx) | OUTPUT<br>(OUTx) | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                 |                                                     | Н           | H or<br>Open          | Н                | Normal Operation: A channel output assumes the logic state of its input.                                                                                                                                                                                                                                                                                                                   |
|                                                 |                                                     | L           | H or Open             | L                | assumes the logic state of its input.                                                                                                                                                                                                                                                                                                                                                      |
| PU                                              | PU                                                  | Open        | H or Open             | Default          | Default mode <sup>(2)</sup> : When INx is open, the corresponding channel output goes to its default logic state.                                                                                                                                                                                                                                                                          |
|                                                 |                                                     | Х           | L                     | Z and Default    | A low value of output enable causes the outputs of the same side to be high impedance and the output of opposite side to be fail-safe default state.                                                                                                                                                                                                                                       |
| PD                                              | PU                                                  | Х           | H or Open             | Default          | Default mode <sup>(2)</sup> : When V <sub>CCI</sub> is unpowered, a channel output assumes the logic state based on the selected default option. When V <sub>CCI</sub> transitions from unpowered to powered-up, a channel output assumes the logic state of the input. When V <sub>CCI</sub> transitions from powered-up to unpowered, channel output assumes the selected default state. |

 $V_{CCI}$  = Input-side  $V_{IO}$  or  $V_{ISOIN}$ ;  $V_{CCO}$  = Output-side  $V_{IO}$  or  $V_{ISOIN}$ ; PU = Powered up ( $V_{IO}$  > 1.7 V,  $V_{ISOIN}$  > 1.7 V); PD = Powered down ( $V_{IO}$  < 1 V,  $V_{ISOIN}$  < 1 V); X = Irrelevant; H = High level; L = Low level. In the default condition, the output is high for the ISOW7721 and low with the F suffix.

V<sub>ISOOUT</sub> shorted to V<sub>ISOIN</sub> on PCB and both GND2 and GISOIN pins are shorted to each other and EN=High



## 9.4.1 Device I/O Schematics

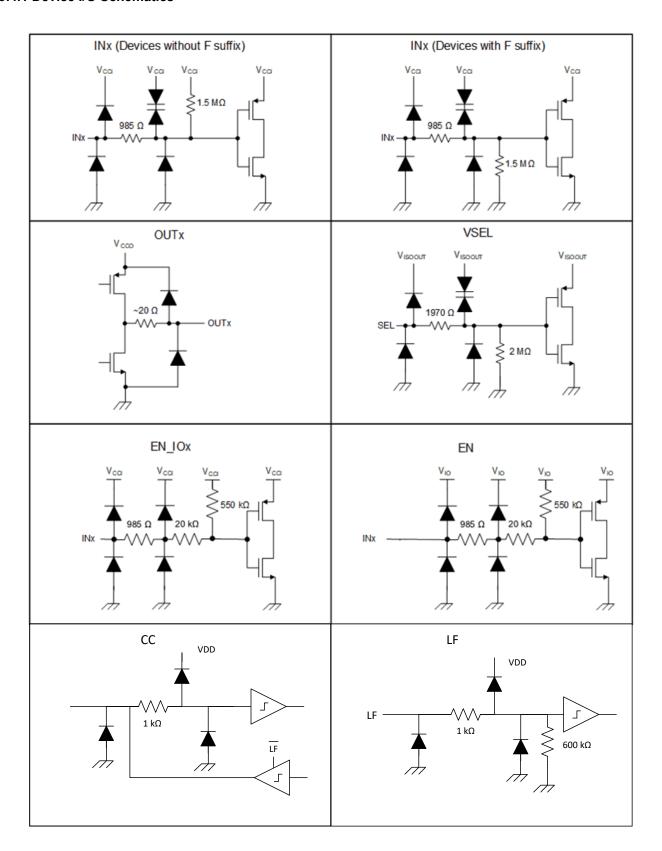



Figure 9-5. Device I/O Schematics

# 10 Application and Implementation

#### Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

### 10.1 Application Information

This device is a high-performance, two channel digital isolator with integrated DC-DC converter. Typically digital isolators require two power supplies isolated from each other to power up both sides of device. Due to the integrated DC-DC converter in the device, the isolated supply is generated inside the device that can be used to power isolated side of the device and peripherals on isolated side, thus saving board space. The device uses single-ended CMOS-logic switching technology. When designing with digital isolators, keep in mind that because of the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (Microcontroller or UART), and a data converter or a line transceiver, regardless of the interface type or standard.

The device is suitable for applications that have limited board space and desire more integration. The device is also suitable for very high voltage applications, where power transformers meeting the required isolation specifications are bulky and expensive.

## 10.2 Typical Application



For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files, simulation results, and test results, refer to TI Design TIDA-01333, *Eight-Channel, Isolated, High-Voltage Analog Input Module With ISOW7841 Reference Design*.

Figure 10-1 shows the typical schematic for SPI isolation.

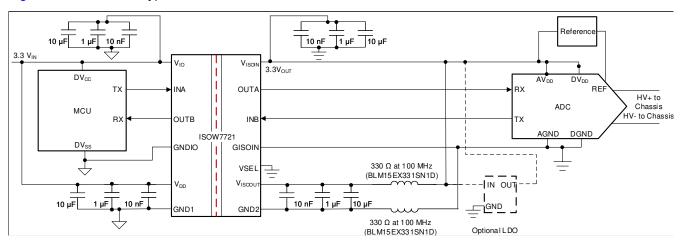



Figure 10-1. Isolated Power and UART for ADC Sensing Application with ISOW7721



### 10.2.1 Design Requirements

To design with this device, use the parameters listed in Table 10-1.

Table 10-1. Design Parameters

| PARAMETER                                                 | VALUE                                                    |  |  |  |  |  |
|-----------------------------------------------------------|----------------------------------------------------------|--|--|--|--|--|
| V <sub>DD</sub> input voltage                             | 3 V to 5.5 V                                             |  |  |  |  |  |
| V <sub>IO</sub> input voltage                             | 1.71 V to 5.5 V                                          |  |  |  |  |  |
| V <sub>ISOIN</sub> input voltage                          | 1.71 V to 5.5 V                                          |  |  |  |  |  |
| V <sub>DD</sub> decoupling capacitors                     | 10 μF + 1 μF + 0.01 μF + optional additional capacitance |  |  |  |  |  |
| V <sub>IO</sub> decoupling capacitors                     | 0.1 μF + optional additional capacitance                 |  |  |  |  |  |
| V <sub>ISOIN</sub> decoupling capacitors                  | 0.1 μF + optional additional capacitance                 |  |  |  |  |  |
| V <sub>ISOOUT</sub> decoupling capacitors                 | 10 μF + 1 μF + 0.01 μF + optional additional capacitance |  |  |  |  |  |
| V <sub>ISOOUT</sub> to V <sub>ISOIN</sub> series inductor | BLM15ELX9331SN1D                                         |  |  |  |  |  |
| GND2 to GISOIN series inductor                            | BLM15ELX9331SN1D                                         |  |  |  |  |  |
| V <sub>IO</sub> series inductor                           | BLM15ELX9331SN1D                                         |  |  |  |  |  |
| V <sub>DD</sub> series inductor                           | BLM15ELX9331SN1D                                         |  |  |  |  |  |

Because of very-high current flowing through the ISOW7721  $V_{DD}$  and  $V_{ISOOUT}$  supplies, higher decoupling capacitors typically provide better noise and ripple performance. Although a 10- $\mu$ F capacitor is adequate, higher decoupling capacitors (such as 47  $\mu$ F) on both the  $V_{DD}$  and  $V_{ISOOUT}$  pins to the respective grounds are strongly recommended to achieve the best performance.

### 10.2.2 Detailed Design Procedure

The devices requires specific placement of external bypass capacitors and ferrite beads to operate at high performance. These low-ESR ceramic bypass capacitors must be placed as close to the chip pads as possible.

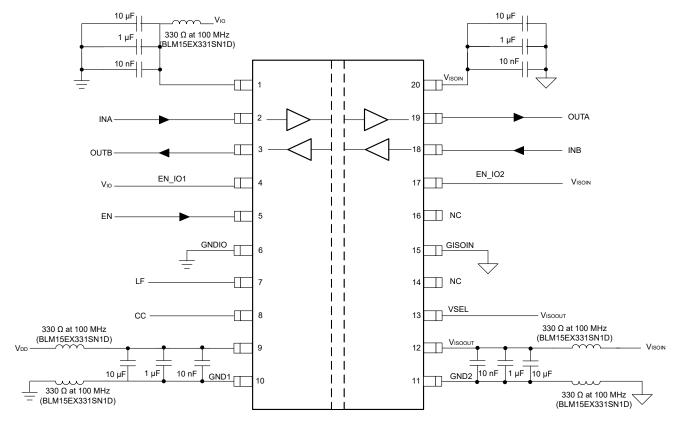



Figure 10-2. Typical ISOW7721Circuit Hook-Up

 $I_{ISOOUT} = 100 \text{ mA}$ 

### 10.2.3 Application Curve

10.2.4 Insulation Lifetime

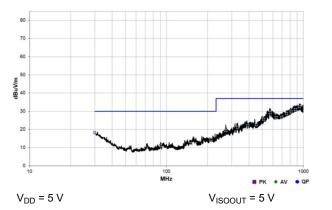



Figure 10-3. ISOW77xx Radiated Emissions versus CISPR32B line (Blue)

Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown (TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal device and high voltage applied between the two sides; See Figure 10-4 for TDDB test setup. The insulation breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million (ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20% higher than the specified value.

Figure 10-5 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime. Based on the TDDB data, the intrinsic capability of the insulation is 1000  $V_{RMS}$  with a lifetime of 1184 years.

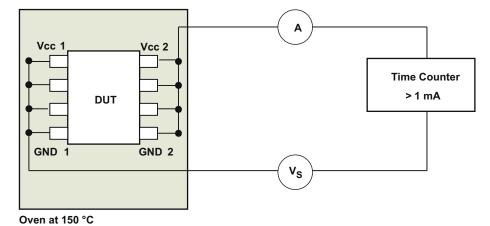



Figure 10-4. Test Setup for Insulation Lifetime Measurement



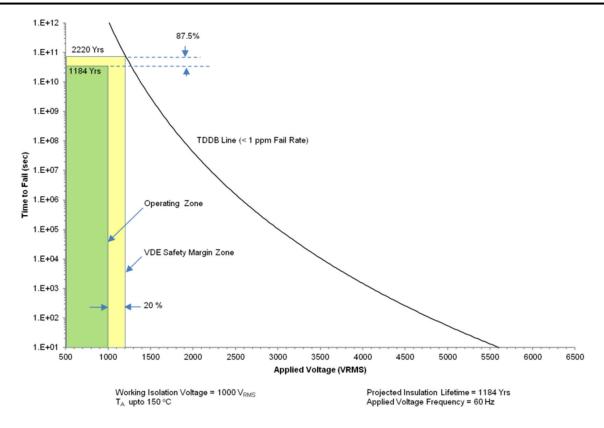



Figure 10-5. Insulation Lifetime Projection Data

11 Power Supply Recommendations

To help make sure that operation is reliable at data rates and supply voltages, adequate decoupling capacitors must be located as close to supply pins as possible.  $V_{ISOOUT}$  needs to be connected to  $V_{ISOIN}$  to ensure the feedback channel is properly powered to regulate the DC-DC converter. If  $V_{ISOOUT}$  and  $V_{ISOIN}$  are not connected, the DC-DC converter will run open loop and the  $V_{ISOOUT}$  voltage will drift until the over-voltage clamp clamps at 6 V. There are two ways to connect  $V_{ISOOUT}$  and  $V_{ISOIN}$ :

- 1) Connect  $V_{ISOOUT}$  and  $V_{ISOIN}$  directly with a ferrite bead. A ferrite bead is recommended between  $V_{ISOOUT}$  and  $V_{ISOIN}$  to further reduce emissions.
- 2) Connect  $V_{\text{ISOOUT}}$  and  $V_{\text{ISOIN}}$  with a ferrite bead through an LDO that remains powered up at all times. If the LDO has an EN pin then keep the EN high at all times.

The input supply ( $V_{IO}$  and  $V_{DD}$ ) must have an appropriate current rating to support output load and switching at the maximum data rate required by the end application. For more information, refer to the Section 10.2 section.

For an output load current of 110 mA, it is recommended to have >600 mA of input current limit and for lower output load currents, the input current limit can be proportionally lower.



# 12 Layout

## 12.1 Layout Guidelines

A low cost two layer PCB should be sufficient to achieve good EMC performance:

- Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link.
- Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow.
- Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/in<sup>2</sup>.
- Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias.

If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly.

Because the device has no thermal pad to dissipate heat, the device dissipates heat through the respective GND pins. Ensure that enough copper is present on both GND pins to prevent the internal junction temperature of the device from rising to unacceptable levels.

Figure 12-1 shows the recommended placement and routing of device bypass capacitors. Below guidelines must be followed to meet application EMC requirements:

- High frequency bypass capacitors 10 nF must be placed close to V<sub>DD</sub> and V<sub>ISOOUT</sub> pins, less than 1 mm distance away from device pins. This is very essential for optimised radiated emissions performance. Ensure that these capacitors are 0402 size so that they offer least inductance (ESL).
- Bulk capacitors of atleast 10 μF must be placed on power converter input (V<sub>DD</sub>) and output (V<sub>ISOOUT</sub>) supply pins.
- Traces on V<sub>DD</sub> and GND1 must be symmetric till bypass capacitors. Similarly traces on V<sub>ISOOUT</sub> and GND2 must be symmetric.
- Place two 0402 size Ferrite beads (Part number: BLM15EX331SN1) on V<sub>ISOOUT</sub> and GND2 path so that any high frequency noise from power converter output sees a high impedance before it goes to other components on PCB.
- Do not have any metal traces or ground pour within 4 mm of power converter output terminals V<sub>ISOOUT</sub> pin12 and GND2 pin11. VSEL pin is also in V<sub>ISOOUT</sub> domain and should be shorted to either pin 11 or pin 12 for output voltage selection.
- Following the layout guidelines of EVM as much as possible is highly recommended for a low radiated emissions design.

#### 12.1.1 PCB Material

For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-extinguishing flammability-characteristics.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

# 12.2 Layout Example

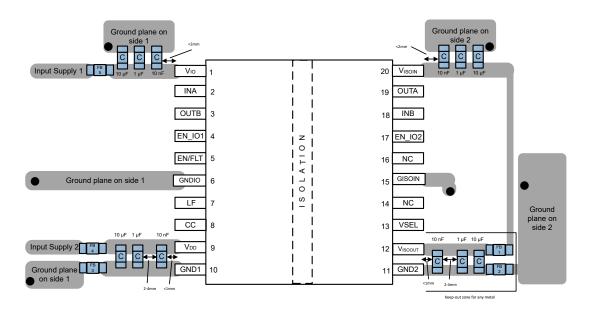



Figure 12-1. Layout Example



# 13 Device and Documentation Support

# 13.1 Device Support

# 13.1.1 Development Support

For development support, refer to:

- 8-ch Isolated High Voltage Analog Input Module with ISOW7841 Reference Design
- Isolated RS-485 With Integrated Signal and Power Reference Design
- Isolated RS-232 With Integrated Signal and Power Reference Design

### 13.2 Documentation Support

#### 13.2.1 Related Documentation

For related documentation see the following:

- Texas Instruments, Digital Isolator Design Guide
- Texas Instruments, Isolation Glossary

# 13.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

# 13.4 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

#### 13.5 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

#### 13.6 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

## 13.7 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

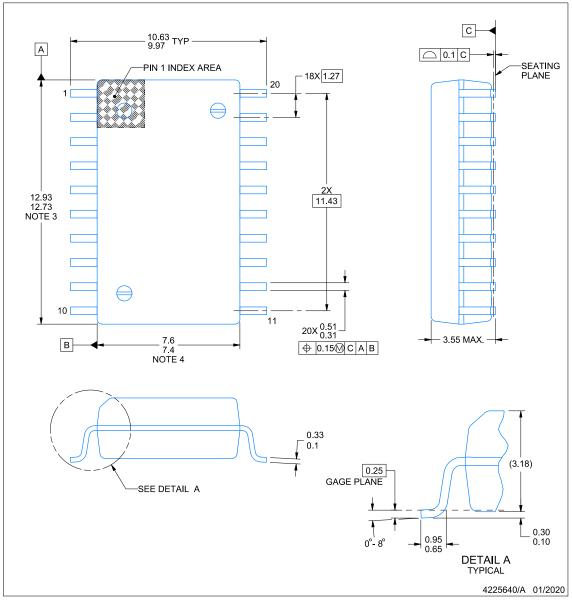






# 14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.




# **PACKAGE OUTLINE**

# **DFM0020A**

# SOIC - 3.55 mm max height

SMALL OUTLINE PACKAGE



#### NOTES:

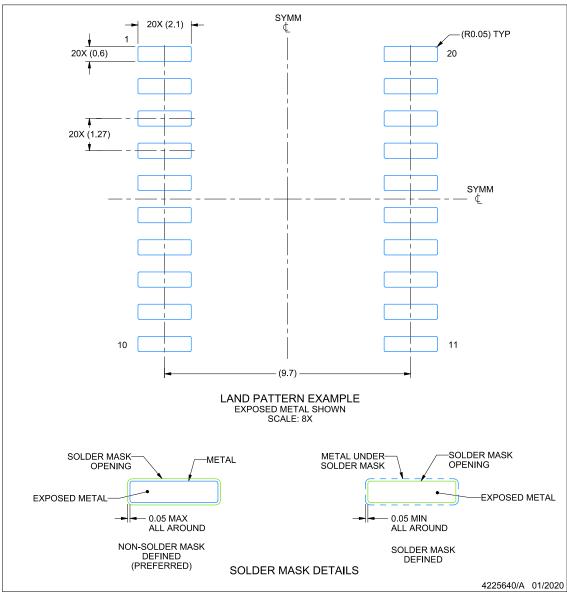
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

  2. This drawing is subject to change without notice.

  3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.

  4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Ref. JEDEC registration MS-013






# **EXAMPLE BOARD LAYOUT**

# **DFM0020A**

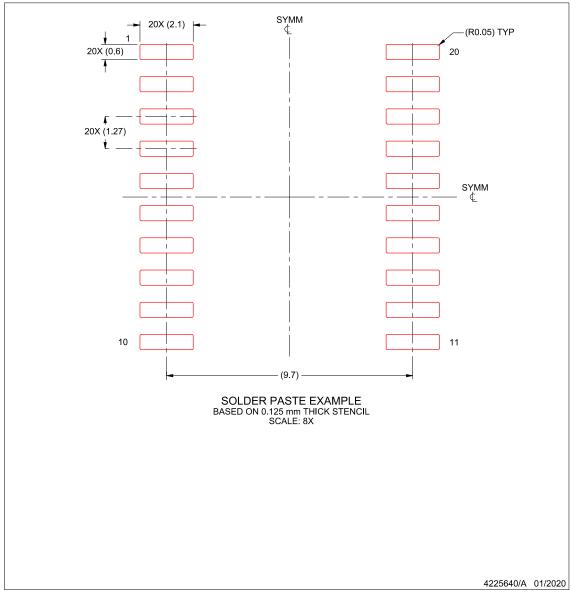
# SOIC - 3.55 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.




# **EXAMPLE STENCIL DESIGN**

# **DFM0020A**

# SOIC - 3.55 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- design recommendations.

  8. Board assembly site may have different recommendations for stencil design.



www.ti.com 13-Aug-2022

#### PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp       | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------|
| ISOW7721DFMR     | ACTIVE        | SOIC         | DFM                | 20   | 850            | RoHS & Green | NIPDAU                        | Level-3-260C-168 HR | -40 to 125   | ISOW7721                | Samples |
| ISOW7721FDFMR    | ACTIVE        | SOIC         | DFM                | 20   | 850            | RoHS & Green | NIPDAU                        | Level-3-260C-168 HR | -40 to 125   | ISOW7721F               | Samples |

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

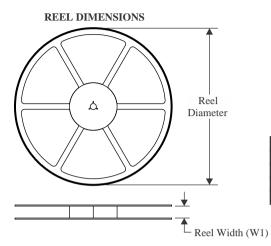
**Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

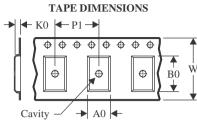
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

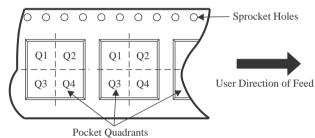



# **PACKAGE OPTION ADDENDUM**


www.ti.com 13-Aug-2022

# **PACKAGE MATERIALS INFORMATION**

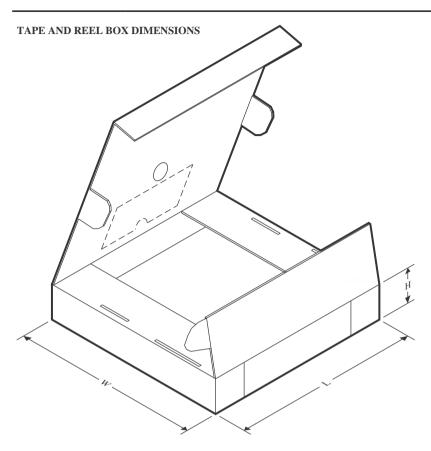
www.ti.com 14-Aug-2022


## TAPE AND REEL INFORMATION





| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |


### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



#### \*All dimensions are nominal

| Device        | Package<br>Type | Package<br>Drawing |    | SPQ | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|---------------|-----------------|--------------------|----|-----|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| ISOW7721DFMR  | SOIC            | DFM                | 20 | 850 | 330.0                    | 24.4                     | 10.85      | 13.4       | 4.0        | 16.0       | 16.0      | Q1               |
| ISOW7721FDFMR | SOIC            | DFM                | 20 | 850 | 330.0                    | 24.4                     | 10.85      | 13.4       | 4.0        | 16.0       | 16.0      | Q1               |

www.ti.com 14-Aug-2022



# \*All dimensions are nominal

| Device        | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) |
|---------------|--------------|-----------------|------|-----|-------------|------------|-------------|
| ISOW7721DFMR  | SOIC         | DFM             | 20   | 850 | 350.0       | 350.0      | 43.0        |
| ISOW7721FDFMR | SOIC         | DFM             | 20   | 850 | 350.0       | 350.0      | 43.0        |

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated