
SDLS213B - DECEMBER 1983 - REVISED NOVEMBER 2004

- Dual Versions of Highly Stable SN54121 and SN74121 One Shots
- SN54221 and SN74221 Demonstrate Electrical and Switching Characteristics That Are Virtually Identical to the SN54121 and SN74121 One Shots
- Pinout Is Identical to the SN54123, SN74123, SN54LS123, and SN74LS123
- Overriding Clear Terminates Output Pulse

	MAXIMUM OUTPUT PULSE
TYPE	LENGTH(S)
SN54221	21
SN74221	28
SN54LS221	49
SN74LS221	70

description/ordering information

The '221 and 'LS221 devices are dual multivibrators with performance characteristics virtually identical to those of the '121 devices. Each multivibrator features a negative-transition-triggered input and a positive-transition-triggered input, either of which can be used as an inhibit input.

NC - No internal connection

TA	PACKAGI	Eţ	ORDERABLE PART NUMBER	TOP-SIDE MARKING							
			SN74221N	SN74221N							
	PDIP – N	Tube	SN74LS221N	SN74LS221N							
0°C to 70°C		Tube	SN74LS221D	1.0004							
	SOIC – D	Tape and reel	SN74LS221DR	LS221							
	SOP – NS	Tape and reel	SN74LS221NSR	74LS221							
	SSOP – DB	Tape and reel	SN74LS221DBR	LS221							
		Taka	SNJ54221J	SNJ54221J							
–55°C to 125°C	CDIP – J	Tube	SNJ54LS221J	SNJ54LS221J							
	LCCC – FK	Tube	SNJ54LS221FK	SNJ54LS221FK							

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2004, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

description/ordering information (continued)

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitt-trigger input circuitry (TTL hysteresis) for B input allows jitter-free triggering from inputs with transition at rates as slow as 1 V/s, providing the circuit with excellent noise immunity, typically of 1.2 V. A high immunity to V_{CC} noise, typically of 1.5 V, also is provided by internal latching circuitry.

Once fired, the outputs are independent of further transitions of the A and B inputs and are a function of the timing components, or the output pulses can be terminated by the overriding clear. Input pulses can be of any duration relative to the output pulse. Output pulse length can be varied from 35 ns to the maximum by choosing appropriate timing components. With $R_{ext} = 2 k\Omega$ and $C_{ext} = 0$, an output pulse typically of 30 ns is achieved that can be used as a dc-triggered reset signal. Output rise and fall times are TTL compatible and independent of pulse length. Typical triggering and clearing sequences are shown as a part of the switching characteristics waveforms.

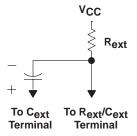
Pulse-width stability is achieved through internal compensation and is virtually independent of V_{CC} and temperature. In most applications, pulse stability is limited only by the accuracy of external timing components.

Jitter-free operation is maintained over the full temperature and V_{CC} ranges for more than six decades of timing capacitance (10 pF to 10 μ F) and more than one decade of timing resistance (2 k Ω to 30 k Ω for the SN54221, 2 k Ω to 10 k Ω for the SN54221, 2 k Ω to 70 k Ω for the SN54LS221, and 2 k Ω to 100 k Ω for the SN74LS221). Throughout these ranges, pulse width is defined by the relationship: t_w(out) = C_{ext}R_{ext} ln2 \approx 0.7 C_{ext}R_{ext}. In circuits where pulse cutoff is not critical, timing capacitance up to 1000 μ F and timing resistance as low as 1.4 k Ω can be used. Also, the range of jitter-free output pulse widths is extended if V_{CC} is held to 5 V and free-air temperature is 25°C. Duty cycles as high as 90% are achieved when using maximum recommended R_T. Higher duty cycles are available if a certain amount of pulse-width jitter is allowed.

The variance in output pulse width from device to device typically is less than $\pm 0.5\%$ for given external timing components. An example of this distribution for the '221 is shown in Figure 3. Variations in output pulse width versus supply voltage and temperature for the '221 are shown in Figures 4 and 5, respectively.

Pin assignments for these devices are identical to those of the SN54123/SN74123 or SN54LS123/SN74LS123 so that the '221 or 'LS221 devices can be substituted for those products in systems not using the retrigger by merely changing the value of R_{ext} and/or C_{ext} ; however, the polarity of the capacitor must be changed.

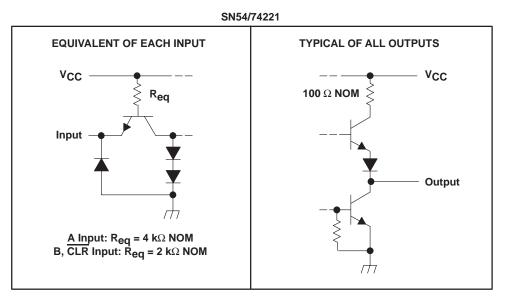
(eac	n mono	stable m	ultivibra	tor)			
	INPUTS		OUTPUTS				
CLR	Α	В	Q	Q			
L	Х	Х	L	Н			
Х	Н	Х	L	Н			
Х	Х	L	L	Н			
н	L	\uparrow	†	പ‡			
н	\downarrow	Н	†	പ‡			
↑‡	L	Н	ூ†	പ1			


FUNCTION TABLE
(each monostable multivibrator)

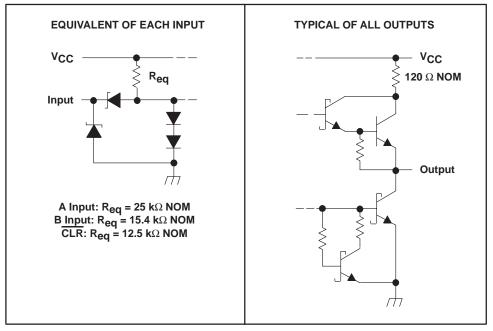
[†] Pulsed-output patterns are tested during AC switching at 25°C with $R_{ext} = 2 k\Omega$, and $C_{ext} = 80 \text{ pF.}$

[‡] This condition is true only if the output of the latch formed by the two NAND gates has been conditioned to the logic 1 state prior to CLR going high. This latch is conditioned by taking either A high or B low while CLR is inactive (high).

timing component connections



NOTE: Due to the internal circuit, the R_{ext}/C_{ext} terminal never is more positive than the C_{ext} terminal.



SDLS213B - DECEMBER 1983 - REVISED NOVEMBER 2004

schematics of inputs and outputs

SN54/74LS221

SDLS213B - DECEMBER 1983 - REVISED NOVEMBER 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}		7 V
Input voltage range, V _I (see Note 1): 'LS221 .		7 V
'221		5.5 V
Package thermal impedance, θ_{JA} (see Note 2):	D package	73°C/W
	DB package	82°C/W
	N package	67°C/W
	NS package	64°C/W
Storage temperature range, T_{stg}		$-65^{\circ}C$ to $150^{\circ}C$

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			SN54221			5	UNIT		
				NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
ЮН	High-level output current				-800			-800	μA
IOL	Low-level output current				16			16	mA
	Disc. on fell of instant and a state	B input	1*			1			V/s
$\Delta v / \Delta t$	Rise or fall of input pulse rate	A input	1*			1			V/µs
TA	Operating free-air temperature		-55		125	0		70	°C

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SDLS213B - DECEMBER 1983 - REVISED NOVEMBER 2004

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		ND TONOT		SN54221		5	SN74221		
PARAMETER	TEST CONDITIONS		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
Positive-going threshold voltage, B input	$V_{CC} = MIN$			1.55	2*		1.55	2	V
Negative-going threshold voltage, B input	$V_{CC} = MIN$		0.8*	1.35		0.8	1.35		V
	$V_{CC} = MIN,$	lj = -12 mA			-1.5			-1.5	V
	$V_{CC} = MIN,$	I _{OH} = -800 μA	2.4	3.4		2.4	3.4		V
	$V_{CC} = MIN,$	I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
	$V_{CC} = MAX,$	VI = 5.5 V			1			1	mA
A input		N 04N			40			40	
CLR, B input	V _{CC} = MAX,	$V_{I} = 2.4 V$			80			80	μA
A input		N 04N			-1.6			-1.6	
CLR, B input	$V_{CC} = MAX,$	VI = 0.4 V			-3.2			-3.2	mA
	$V_{CC} = MAX$		-20		-55	-18		-55	mA
Quiescent				26	50*		26	50	
Triggered	VCC = MAX			46	80*		46	80	mA
	B input Negative-going threshold voltage, B input A input CLR, B input A input CLR, B input CLR, B input	Positive-going threshold voltage, B input $V_{CC} = MIN$ Negative-going threshold voltage, B input $V_{CC} = MIN$ $V_{CC} = MIN$, $V_{CC} = MAX$, $V_{CC} = MAX$,A input $V_{CC} = MAX$,CLR, B input $V_{CC} = MAX$,CLR, B input $V_{CC} = MAX$,Quiescent $V_{CC} = MAX$	Positive-going threshold voltage, B input $V_{CC} = MIN$ Negative-going threshold voltage, B input $V_{CC} = MIN$ Vcc = MIN, $I_I = -12 \text{ mA}$ Vcc = MIN, $I_OH = -800 \mu A$ Vcc = MIN, $I_OH = -800 \mu A$ Vcc = MIN, $I_OL = 16 mA$ Vcc = MAX, $V_I = 5.5 \vee$ A input $V_{CC} = MAX,$ VLR, B input $V_{CC} = MAX,$ VCC = MAX, $V_I = 2.4 \vee$ A input $V_{CC} = MAX,$ VI = 0.4 \vee $V_{CC} = MAX,$	PARAMETERTEST CONDITIONSTMINPositive-going threshold voltage, B input $V_{CC} = MIN$ $V_{CC} = MIN$ 0.8^* Negative-going threshold voltage, B input $V_{CC} = MIN$ $I_I = -12 \text{ mA}$ 0.8^* VCC = MIN, VCC = MIN, $I_Q = -800 \mu A$ 2.4 VCC = MIN, VCC = MIN, VCC = MIN, $I_{OL} = 16 \text{ mA}$ 2.4 VCC = MIN, VCC = MAX, $V_I = 5.5 V$ $I_Q = 16 \text{ mA}$ VCC = MAX, CLR, B input $V_{CC} = MAX,$ VCC = MAX, $V_I = 2.4 V$ A input CLR, B input $V_{CC} = MAX,$ VCC = MAX, $V_I = 0.4 V$ Quiescent $V_{CC} = MAX$ -20	PARAMETERTEST CONDITIONSTMINTYP1Positive-going threshold voltage, B input $V_{CC} = MIN$ 1.55Negative-going threshold voltage, B input $V_{CC} = MIN$ 0.8^* 1.35VectorVCC = MIN, $I_I = -12 \text{ mA}$ 0.8^* 1.35VectorVCC = MIN, $I_I = -12 \text{ mA}$ 0.8^* 1.35VectorVCC = MIN, $I_OH = -800 \mu A$ 2.4 3.4 VectorVectorMIN $10L = 16 \text{ mA}$ 0.2 VectorMAX, $V_I = 5.5 \text{ V}$ 0.2 0.2 A inputVectorMAX, $V_I = 2.4 \text{ V}$ 0.2 A inputVectorMAX, $V_I = 0.4 \text{ V}$ 0.2 QuiescentVectorMAX, -20 0.2	Positive-going threshold voltage, B inputV _{CC} = MINMINTYP‡MAXNegative-going threshold voltage, B inputV _{CC} = MIN1.55 2^* Negative-going threshold voltage, B inputV _{CC} = MIN, $1_I = -12 \text{ mA}$ -1.5 V _{CC} = MIN,I _I = -12 mA -1.5 V _{CC} = MIN,I _{OH} = -800 µA2.43.4V _{CC} = MIN,I _{OH} = -800 µA2.43.4V _{CC} = MIN,I _{OL} = 16 mA0.20.4V _{CC} = MAX,V _I = 5.5 V11A inputV _{CC} = MAX,V _I = 2.4 V80A inputV _{CC} = MAX,V _I = 0.4 V-1.6CLR, B inputV _{CC} = MAX,V _I = 0.4 V-3.2QuiescentV _{CC} = MAX-20-55	PARAMETERTEST CONDITIONSTMINTYP‡MAXMINPositive-going threshold voltage, B input $V_{CC} = MIN$ 1.552*2*Negative-going threshold voltage, B input $V_{CC} = MIN$ 0.8^* 1.352*0.8V_{CC} = MIN $I_I = -12 \text{ mA}$ 0.8^* 1.350.80.8V_{CC} = MIN, $I_I = -12 \text{ mA}$ 0.8^* 1.350.8V_{CC} = MIN, $I_I = -12 \text{ mA}$ 2.4 3.42.4V_{CC} = MIN, $I_{OL} = -800 \mu A$ 2.43.42.4V_{CC} = MIN, $I_{OL} = 16 \text{ mA}$ 0.2 0.4 0.4V_{CC} = MAX, $V_I = 5.5 \text{ V}$ 11A input $V_{CC} = MAX,$ $V_I = 2.4 \text{ V}$ 801A input $V_{CC} = MAX,$ $V_I = 0.4 \text{ V}$ 801CLR, B input $V_{CC} = MAX,$ $V_I = 0.4 \text{ V}$ -3.21Quiescent $V_{CC} = MAX$ -20 -55 -18	PARAMETERTEST CONDITIONSTMINTYP‡MAXMINTYP‡Positive-going threshold voltage, B input $V_{CC} = MIN$ 1.552*1.55Negative-going threshold voltage, B input $V_{CC} = MIN$ 0.8^* 1.352*0.81.35Negative-going threshold voltage, B input $V_{CC} = MIN$ $I_I = -12 mA$ -1.5 0.81.35VCC = MIN, $I_I = -12 mA$ -1.5 -1.5 -1.5 -1.5 -1.5 VCC = MIN, $I_OH = -800 \mu A$ 2.4 3.4 2.4 3.4 -2.4 3.4 VCC = MIN, $I_OH = -800 \mu A$ 2.4 3.4 -2.4 <td< td=""><td>PARAMETERTEST CONDITIONSTMINTYP‡MAXMINTYP‡MAXPositive-going threshold voltage, B input$V_{CC} = MIN$$1.55$$2^*$$1.55$$2^*$$1.55$$2$Negative-going threshold voltage, B input$V_{CC} = MIN$$0.8^*$$1.35$$2^*$$0.8^*$$1.35$$2^*$Negative-going threshold voltage, B input$V_{CC} = MIN$$I_I = -12 \text{ mA}$$0.8^*$$1.35$$0.8$$1.35$$2^*$V_{CC} = MIN,$I_I = -12 \text{ mA}$$-1.5$$0.8^*$$1.35$$-1.5$$0.8^*$$1.35$$0.8$$1.35$V_{CC} = MIN,$I_O = -800 \mu A$$2.4$$3.4$$-1.5$$0.4$$0.2$$0.4$$0.2$$0.4$V_{CC} = MIN,$I_O = -800 \mu A$$0.2$$0.4$$0.2$$0.4$$0.2$$0.4$$0.2$$0.4$V_{CC} = MIN,$I_O = -800 \mu A$$0.2$$0.4$$0.2$$0.4$$0.2$$0.4$$0.2$$0.4$V_{CC} = MAX,$V_I = 5.5 V$$0.2$$0.4$$0.2$$0.4$$0.2$$0.4$$0.2$$0.4$A input$V_{CC} = MAX,$$V_I = 2.4 V$$0.2$$0.4$$0.2$$0.4$$0.2$$0.4$A input$V_{CC} = MAX,$$V_I = 0.4 V$$-0.2$$-0.5$$-1.6$$-0.2$$-0.2$A input$V_{CC} = MAX,$$V_I = 0.4 V$$-0.2$$-55$$-18$$-55$Quiescent$V_{CC} = MAX$$-26$$50^*$$-26$<!--</td--></td></td<>	PARAMETERTEST CONDITIONSTMINTYP‡MAXMINTYP‡MAXPositive-going threshold voltage, B input $V_{CC} = MIN$ 1.55 2^* 1.55 2^* 1.55 2 Negative-going threshold voltage, B input $V_{CC} = MIN$ 0.8^* 1.35 2^* 0.8^* 1.35 2^* Negative-going threshold voltage, B input $V_{CC} = MIN$ $I_I = -12 \text{ mA}$ 0.8^* 1.35 0.8 1.35 2^* V_{CC} = MIN, $I_I = -12 \text{ mA}$ -1.5 0.8^* 1.35 -1.5 0.8^* 1.35 0.8 1.35 V_{CC} = MIN, $I_O = -800 \mu A$ 2.4 3.4 -1.5 0.4 0.2 0.4 0.2 0.4 V_{CC} = MIN, $I_O = -800 \mu A$ 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 V_{CC} = MIN, $I_O = -800 \mu A$ 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 V_{CC} = MAX, $V_I = 5.5 V$ 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 A input $V_{CC} = MAX,$ $V_I = 2.4 V$ 0.2 0.4 0.2 0.4 0.2 0.4 A input $V_{CC} = MAX,$ $V_I = 0.4 V$ -0.2 -0.5 -1.6 -0.2 -0.2 A input $V_{CC} = MAX,$ $V_I = 0.4 V$ -0.2 -55 -18 -55 Quiescent $V_{CC} = MAX$ -26 50^* -26 </td

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

timing requirements over recommended ranges of supply voltage and operating free-air temperature

			SN54	1221	SN74			
			MIN	MAX	MIN	MAX	UNIT	
tw	Pulse duration	A or B input	50		50			
		CLR	20		20		ns	
t _{su}	Setup time, inactive-state¶	CLR	15		15		ns	
R _{ext}	External timing resistance		1.4*	30*	1.4	40	kΩ	
C _{ext}	External timing capacitance		0*	1000*	0	1000	μF	
	Output duty cycle	$R_{ext} = 2 k\Omega$		67%		67%		
		R _{ext} = MAX R _{ext}		90%		90%		

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

¶ Inactive-state setup time also is referred to as recovery time.

SDLS213B - DECEMBER 1983 - REVISED NOVEMBER 2004

switching characteristics V_{CC} = 5 V, R_L = 400 Ω , T_A = 25°C (see Figures 1 and 2)

DADAMETER	FROM	то	TEAT OO		s	N54221		S	N74221				
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT		
	А	0				45	70		45	70			
^t PLH	В	Q	C _{ext} = 80 pF,			35	55		35	55			
	А	Q		C _{ext} = 80 pr,	$C_{ext} = 80 \text{ pr},$	$R_{ext} = 2 K\Omega_2$		50	80		50	80	ns
^t PHL	В	Q					40	65		40	65		
^t PHL		Q	0 00 - 5				27			27			
^t PLH	CLR	Q	C _{ext} = 80 pF,	$R_{ext} = 2 K\Omega$			40			40	ns		
			C _{ext} = 80 pF,	$R_{ext} = 2 k\Omega$	70	110	150	70	110	150			
+	A an D	Q or Q	$C_{ext} = 0,$	$R_{ext} = 2 k\Omega$	17	30	50	17	30	50	ns		
t _w	A or B	Q or Q	C _{ext} = 100 pF,	$R_{ext} = 10 \ k\Omega$	650	700	750	650	700	750			
			$C_{ext} = 1 \ \mu F$,	$R_{ext} = 10 \ k\Omega$	6.5*	7	7.5*	6.5	7	7.5	ms		

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

recommended operating conditions (see Note 4)

			SI	SN54LS221			SN74LS221			
	-			NOM	MAX	MIN	NOM	MAX	UNIT	
VCC	Supply voltage		4.5	5	5.5	4.75	5	5.25	V	
ЮН	High-level output current				-400			-400	μΑ	
IOL	Low-level output current				4			8	mA	
	Disc on fall of insulation data and	B input	1*			1			V/s	
$\Delta v / \Delta t$	Rise or fall of input pulse rate	A input	1*			1			V/µs	
Т _А	Operating free-air temperature		-55		125	0		70	°C	

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SDLS213B - DECEMBER 1983 - REVISED NOVEMBER 2004

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			NETANA	SI	N54LS22	:1	SI	N74LS22	1	
	PARAMETER	TEST CONDITIONS [†]		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
V _{T+}	Positive-going threshold voltage, B input	$V_{CC} = MIN$			1	2*		1	2	V
V_{T-}	Negative-going threshold voltage, B input	$V_{CC} = MIN$		0.7*	0.9		0.8	0.9		V
VIK	-	$V_{CC} = MIN,$	lj = -18 mA			-1.5			-1.5	V
VOH		$V_{CC} = MIN,$	I _{OH} = -400 μA	2.5	3.4		2.7	3.4		V
V		V _{CC} = MIN	$I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	V
V _{OL}			IOL = 8 mA					0.35	0.5	V
Ц		$V_{CC} = MAX,$	V _I = 7 V			0.1			0.1	mA
Iн		$V_{CC} = MAX,$	VI = 2.7 V			20			20	μA
	A input		N 0 4 M			-0.4			-0.4	
ΊL	CLR, B input	$V_{CC} = MAX,$	V _I = 0.4 V			-0.8			-0.8	mA
IOS§		V _{CC} = MAX		-20		-100	-20		-100	mA
1	Quiescent				4.7	11		4.7	11	~ ^
ICC	Triggered	V _{CC} = MAX			19	27*		19	27	mA

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

timing requirements over recommended ranges of supply voltage and operating free-air temperature

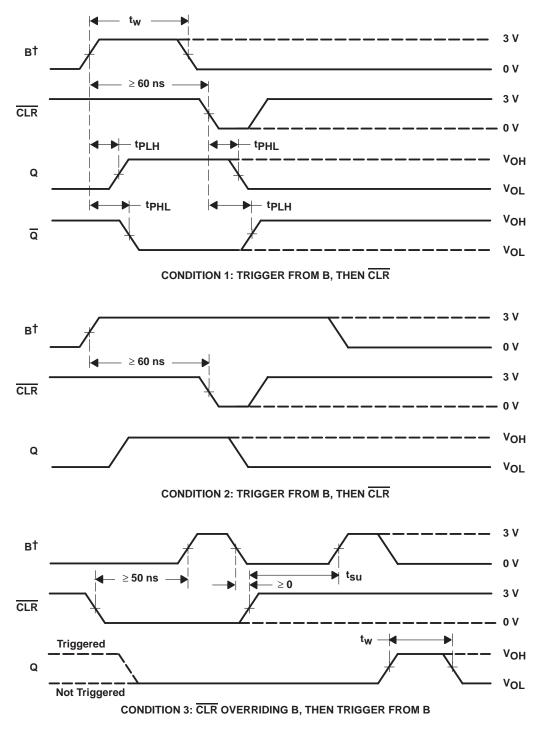
			SN54L	S221	SN74L			
			MIN	MAX	MIN	MAX	UNIT	
	Pulse duration	A or B	50		50			
tw		CLR	40		40		ns	
t _{su}	Setup time, inactive state¶	CLR	15		15		ns	
R _{ext}	External timing resistance		1.4*	70*	1.4	100	kΩ	
C _{ext}	External timing capacitance		0*	1000*	0	1000	μF	
	Output duty cycle	$R_T = 2 k\Omega$		50%		50%		
		$R_T = MAX R_{ext}$		90%		90%		

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

 \P Inactive-state setup time also is referred to as recovery time.

SN54221, SN54LS221, SN74221, SN74LS221 DUAL MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS SDLS213B – DECEMBER 1983 – REVISED NOVEMBER 2004

DADAMETER	FROM	то	TEAT OO	NDITIONO	SN54LS221			SN			
PARAMETER	(INPUT)	(OUTPUT)	TEST CO	NDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	А	0				45	70		45	70	
^t PLH	В	Q	0 00 - 5			35	55		35	55	
	А	Q	C _{ext} = 80 pF,	R _{ext} = 2 K2		50	80		50	80	ns
^t PHL B	В	Q				40	65		40	65	
^t PHL		Q	o oo F	$R_{ext} = 2 k\Omega$		35	55		35	55	
^t PLH	CLR	Q	C _{ext} = 80 pF,			44	65		44	65	ns
t _w A or B Q or Q		C _{ext} = 80 pF,	$R_{ext} = 2 k\Omega$	70	120	150	70	120	150		
		0	$C_{ext} = 0,$	$R_{ext} = 2 k\Omega$	20	47	70	20	47	70	ns
	A OF B	Q or Q	C _{ext} = 100 pF,	$R_{ext} = 10 \ k\Omega$	670	740	810	670	740	810	
				$C_{ext} = 1 \ \mu F$,	$R_{ext} = 10 \ k\Omega$	6*	6.9	7.5*	6	6.9	7.5

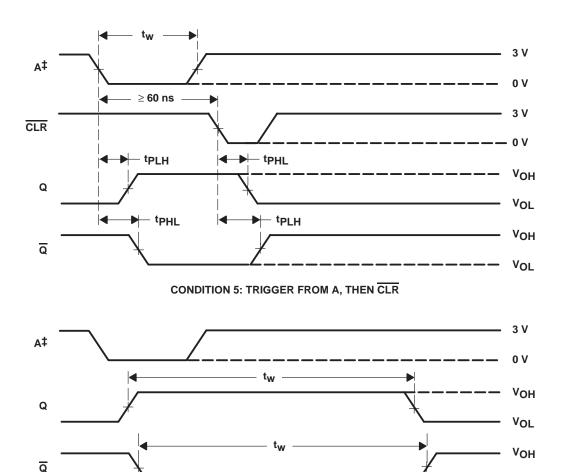

switching characteristics V_{CC} = 5 V, R_L = 2 k $\Omega,$ T_A = 25 $^{\circ}\text{C}$ (see Figures 1 and 2)

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

SDLS213B - DECEMBER 1983 - REVISED NOVEMBER 2004

PARAMETER MEASUREMENT INFORMATION

[†] A is low.



SDLS213B - DECEMBER 1983 - REVISED NOVEMBER 2004

Bt CLRQ VOH VOHVOL

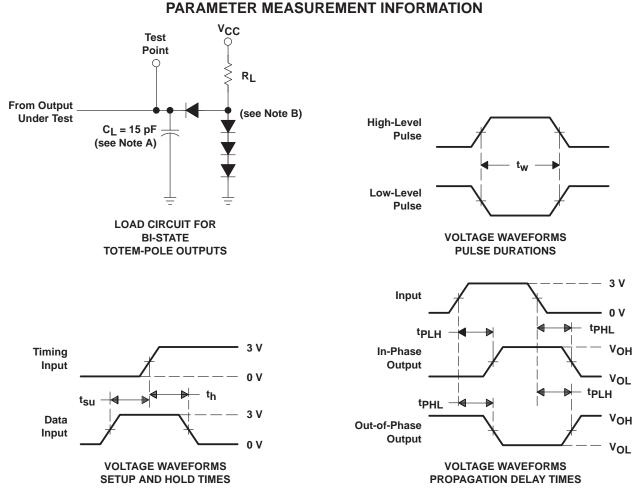
PARAMETER MEASUREMENT INFORMATION

CONDITION 4: TRIGGERING FROM POSITIVE TRANSITION OF CLR

CONDITION 6: TRIGGER FROM A

† A is low.

[‡]B and CLR are high.


- NOTES: A. Input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O \approx 50 Ω ; for SN54/74221, t_f \leq 7 ns, t_f \leq 7 ns, for SN54/74LS221, t_f \leq 1 ns, t_f \leq 6 ns.
 - B. All measurements are made between the 1.5-V points of the indicated transitions for the SN54/74221 or between the 1.3-V points for the SN54/74LS221.

VOL

SDLS213B - DECEMBER 1983 - REVISED NOVEMBER 2004

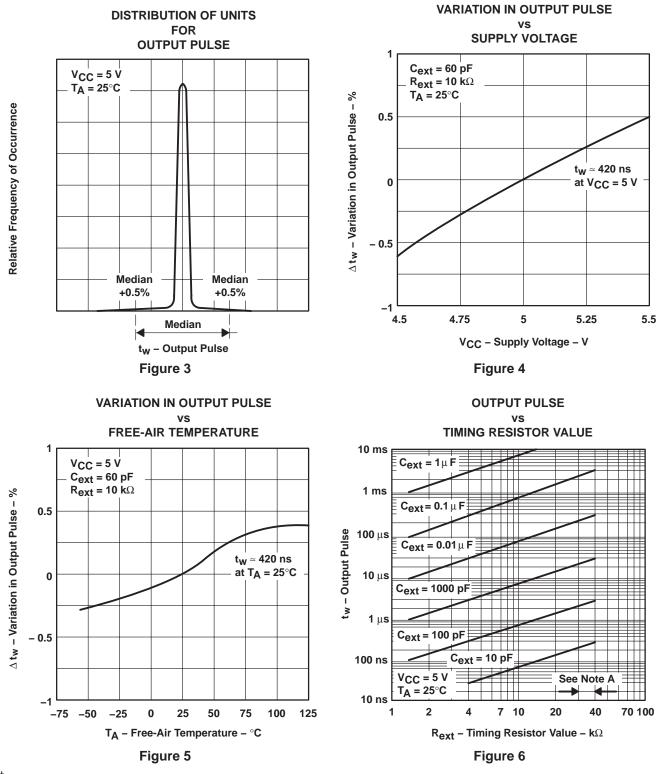

- NOTES: A. CL includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.
 - D. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O \approx 50 Ω and, for SN54/74221, t_f \leq 7 ns, t_f \leq 7 ns, for SN54/74LS221, t_f \leq 15 ns, t_f \leq 6 ns.
 - E. All measurements are made between the 1.5-V points of the indicated transitions for the SN54/74221 or between the 1.3-V points for the SN54/74LS221.

Figure 2. Load Circuits and Voltage Waveforms

SDLS213B - DECEMBER 1983 - REVISED NOVEMBER 2004

TYPICAL CHARACTERISTICS (SN54/74221 ONLY)[†]

[†] Data for temperatures below 0°C and above 70°C, and for supply voltages below 4.75 V and above 5.25 V are applicable for the SN54221 only. NOTE A: These values of resistance exceed the maximum recommended for use over the full military temperature range of the SN54221.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-8771101EA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8771101EA SNJ54221J	Samples
76042012A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	76042012A SNJ54LS 221FK	Samples
7604201EA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7604201EA SNJ54LS221J	Samples
7604201FA	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7604201FA SNJ54LS221W	Samples
JM38510/31402B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 31402B2A	Samples
JM38510/31402BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 31402BEA	Samples
JM38510/31402BFA	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 31402BFA	Samples
M38510/31402B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 31402B2A	Samples
M38510/31402BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 31402BEA	Samples
M38510/31402BFA	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 31402BFA	Samples
SN54221J	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54221J	Samples
SN54LS221J	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS221J	Samples
SN74221N	ACTIVE	PDIP	Ν	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74221N	Samples
SN74221NE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74221N	Samples
SN74LS221D	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS221	Samples
SN74LS221DBR	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS221	Samples
SN74LS221DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS221	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LS221N	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS221N	Samples
SN74LS221NE4	ACTIVE	PDIP	Ν	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS221N	Samples
SN74LS221NSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS221	Samples
SNJ54221J	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8771101EA SNJ54221J	Samples
SNJ54LS221FK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	76042012A SNJ54LS 221FK	Samples
SNJ54LS221J	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7604201EA SNJ54LS221J	Samples
SNJ54LS221W	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	7604201FA SNJ54LS221W	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

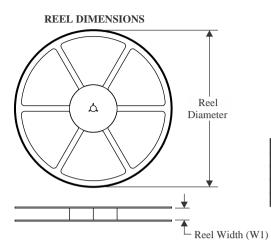
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

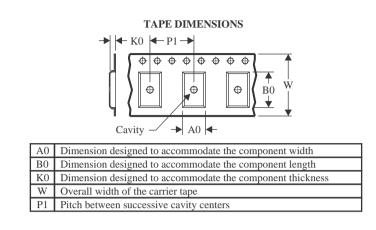
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54221, SN54LS221, SN74221, SN74LS221 :

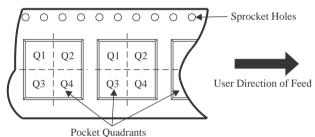
- Catalog : SN74221, SN74LS221
- Military : SN54221, SN54LS221

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

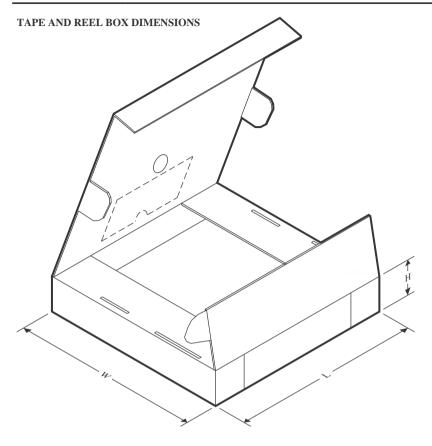


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

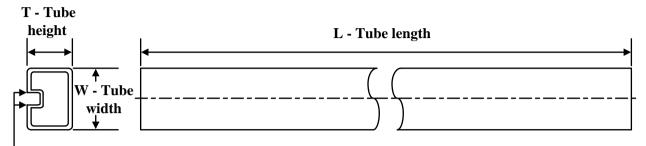

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS221DBR	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74LS221DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS221NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

9-Aug-2022

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS221DBR	SSOP	DB	16	2000	356.0	356.0	35.0
SN74LS221DR	SOIC	D	16	2500	340.5	336.1	32.0
SN74LS221NSR	SO	NS	16	2000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

9-Aug-2022

TUBE

- B - Alignment groove width

*All dimensions are nominal	*All	dimensions	are	nominal	
-----------------------------	------	------------	-----	---------	--

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
76042012A	FK	LCCC	20	1	506.98	12.06	2030	NA
7604201FA	W	CFP	16	1	506.98	26.16	6220	NA
JM38510/31402B2A	FK	LCCC	20	1	506.98	12.06	2030	NA
JM38510/31402BFA	W	CFP	16	1	506.98	26.16	6220	NA
M38510/31402B2A	FK	LCCC	20	1	506.98	12.06	2030	NA
M38510/31402BFA	W	CFP	16	1	506.98	26.16	6220	NA
SN74221N	N	PDIP	16	25	506	13.97	11230	4.32
SN74221N	N	PDIP	16	25	506	13.97	11230	4.32
SN74221NE4	N	PDIP	16	25	506	13.97	11230	4.32
SN74221NE4	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS221D	D	SOIC	16	40	507	8	3940	4.32
SN74LS221N	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS221N	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS221NE4	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS221NE4	N	PDIP	16	25	506	13.97	11230	4.32
SNJ54LS221FK	FK	LCCC	20	1	506.98	12.06	2030	NA
SNJ54LS221W	W	CFP	16	1	506.98	26.16	6220	NA

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

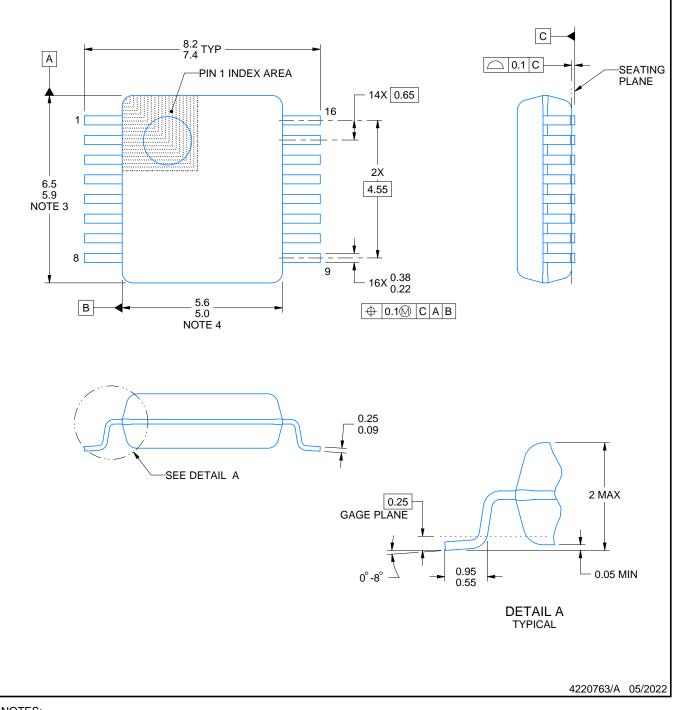
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


DB0016A

PACKAGE OUTLINE

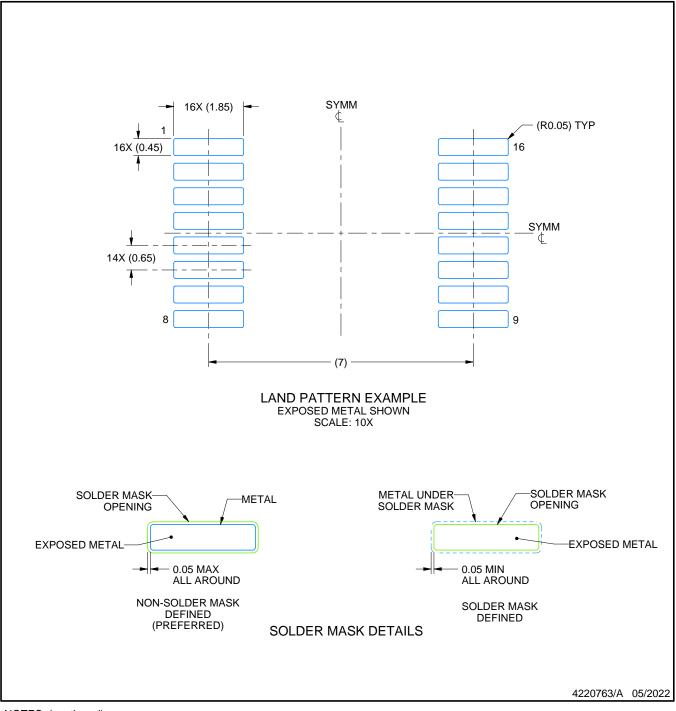
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-150.



DB0016A

EXAMPLE BOARD LAYOUT

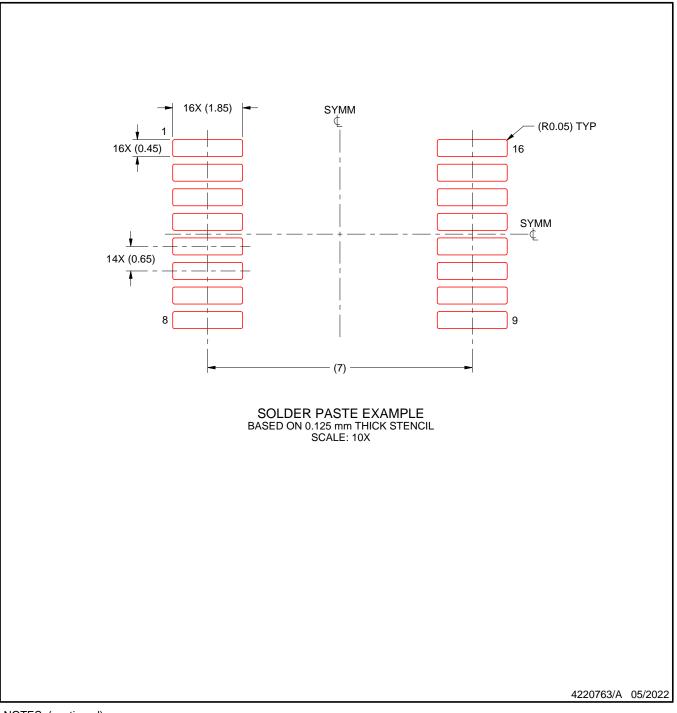
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DB0016A

EXAMPLE STENCIL DESIGN

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Board assembly site may have different recommendations for stencil design.

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

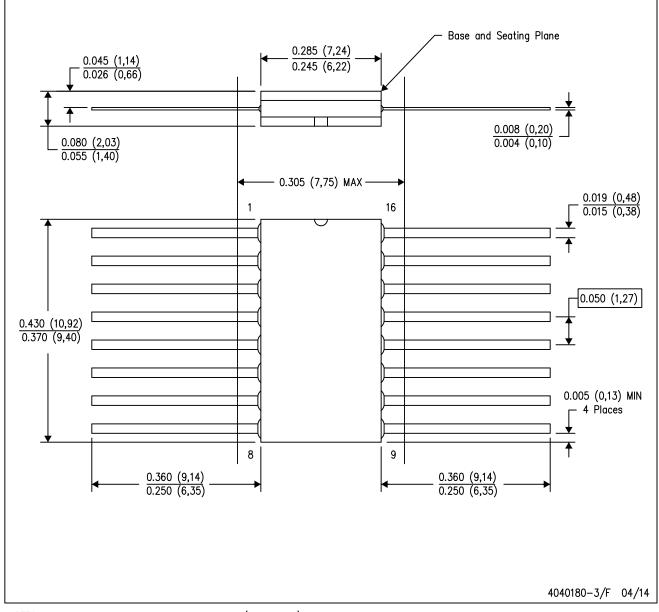
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)


14-PINS SHOWN

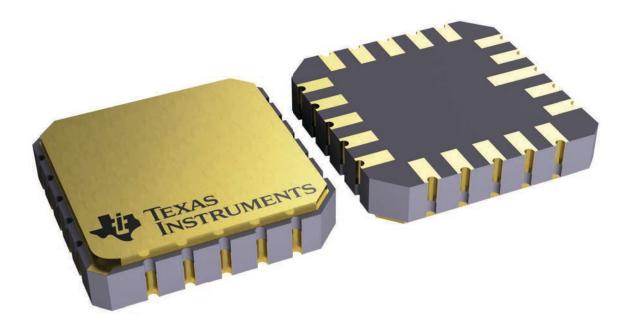
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP2-F16

FK 20


8.89 x 8.89, 1.27 mm pitch

GENERIC PACKAGE VIEW

LCCC - 2.03 mm max height

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

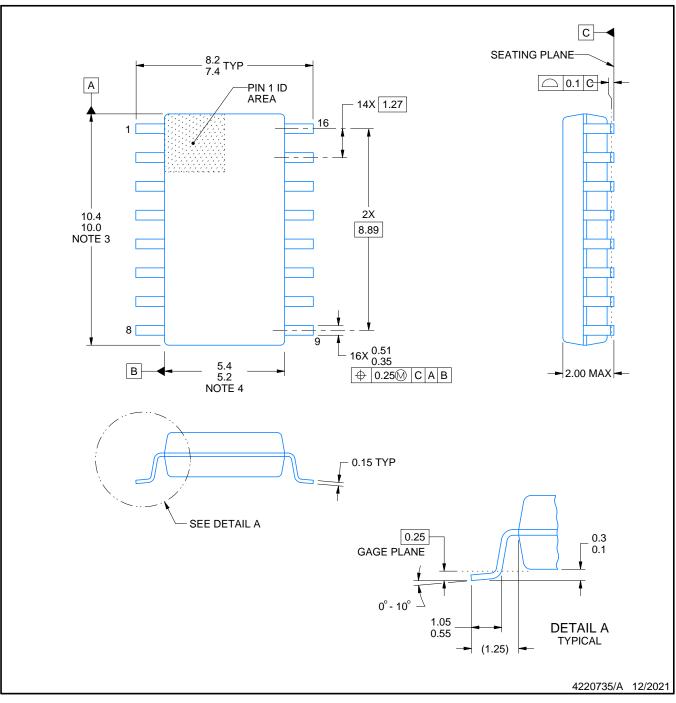
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


NS0016A

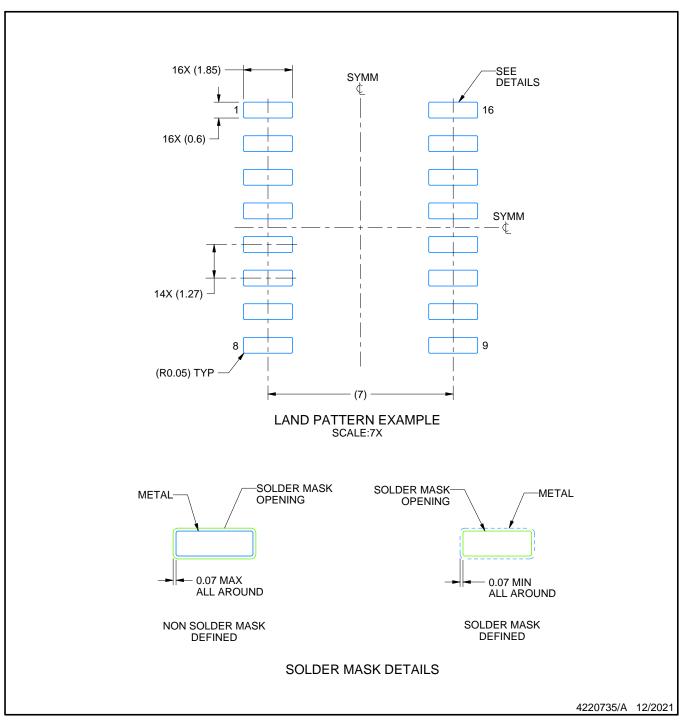
PACKAGE OUTLINE

SOP - 2.00 mm max height

SOP

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- Per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.



NS0016A

EXAMPLE BOARD LAYOUT

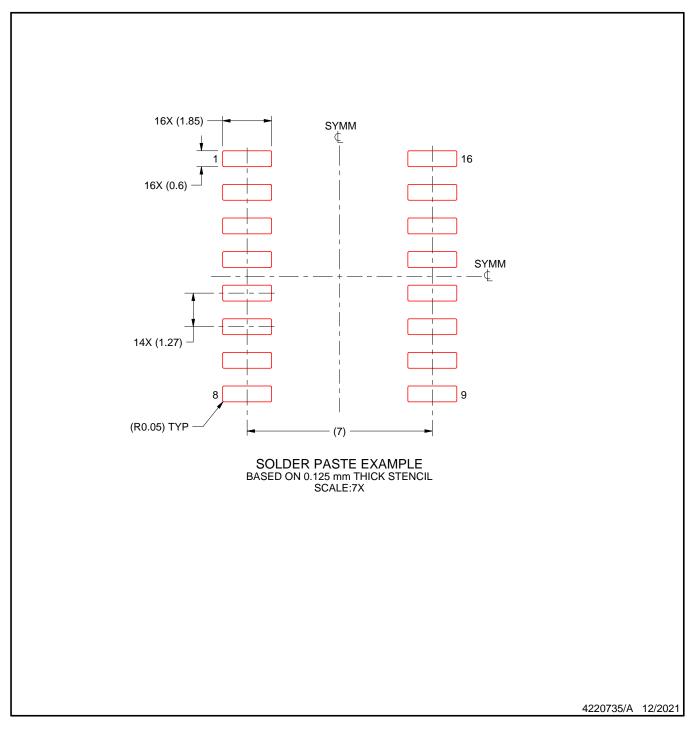
SOP - 2.00 mm max height

SOP

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NS0016A

EXAMPLE STENCIL DESIGN

SOP - 2.00 mm max height

SOP

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated