

SLLS874-OCTOBER 2007

RAD-TOLERANT CLASS V, DUAL DIFFERENTIAL LINE RECEIVER

FEATURES

- Single 5-V Supply
- Differential Line Operation
- Dual Channels
- TTL Compatibility
- ±15-V Common-Mode Input Voltage Range
- ±15-V Differential Input Voltage Range
- Individual Channel Strobes
- Built-In Optional Line-Termination Resistor
- Individual Frequency Response Controls
- Designed for Use With Dual Differential Drivers SN55183 and SN75183
- Designed to Be Interchangeable With National Semiconductor DS7820A and DS8820A
- Rad-Tolerant: >40 kRad (Si) ELDRS
- QML-V Qualified, SMD 5962-79008

DESCRIPTION/ORDERING INFORMATION

The SN55182 dual differential line receiver is designed to sense small differential signals in the presence of large common-mode noise. This device gives TTL-compatible output signals as a function of the polarity of the differential input voltage. The frequency response of each channel can be easily controlled by a single external capacitor to provide immunity to differential noise spikes. The output goes to a high level when the inputs are open circuited. A strobe input (STRB) is provided that, when in the low level, disables the receiver and forces the output to a high level.

NC - No internal connection

The receiver is of monolithic single-chip construction, and both halves of the dual circuits use common power-supply and ground terminals.

The SN55182 is characterized for operation over the full military temperature range of -55°C to 125°C.

	PACKAGED DEVICES					
TEMPERATURE	CERAMIC FLATPACK W (14) ⁽²⁾	SYMBOL				
–55°C to 125°C	5962-7900801VDA	5962-7900801VDA				

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLLS874-OCTOBER 2007

www.ti.com

FUNCTION TABLE⁽¹⁾

INPU	JTS	OUTPUT
STRB	V _{ID}	OUT
L	Х	Н
Н	Н	н
н	L	L

(1) $H = V_I \ge V_{IH}$ min or V_{ID} more positive than V_{TH} max $L = VI \le V_{IL}$ max or VI_D more negative than V_{TL} max X = irrelevant

LOGIC SYMBOL

This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the J, N, and W packages.

LOGIC DIAGRAM (POSITIVE LOGIC)

Pin numbers shown are for the J, N, and W packages.

SN55182-SP

SLLS874-OCTOBER 2007

Resistor values shown are nominal.

Pin numbers shown are for the J, N, and W packages.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		UNIT
V _{CC}	Supply voltage ⁽²⁾	8 V
V _{IC}	Common-mode input voltage	±20 V
V _{ID}	Differential input voltage ⁽³⁾	±20 V
V _{I(STRB)}	Strobe input voltage	8 V
lo	Output sink current	50 mA
	Continuous total power dissipation	See Dissipation Rating Table
T _{stg}	Storage temperature range	-65°C to 150°C
	Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or W package	300°C

(1) The absolute maximum ratings under any condition are limited by the constraints of the silicon process. Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) All voltage values, except differential voltages, are with respect to network ground terminal.
 (3) Differential voltage values are at the noninverting terminal with respect to the inverting terminal.

Copyright © 2007, Texas Instruments Incorporated

SLLS874-OCTOBER 2007

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	DERATING FACTOR	T _A = 70°C	T _A = 125°C
	POWER RATING	ABOVE $T_A = 25^{\circ}C$	POWER RATING	POWER RATING
W ⁽¹⁾	1000 mW	8.0 mW/°C	640 mW	200 mW

(1) In the FK, J, and W packages, SN55182 chips are alloy mounted.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	4.5	5	5.5	V
V _{IC}	Common-mode input voltage			±15	V
V _{IH(STRB)}	High-level strobe input voltage	2.1		5.5	V
V _{IL(STRB)}	Low-level strobe input voltage	0		0.9	V
I _{OH}	High-level output current			-400	μA
I _{OL}	Low-level output current			16	mA
T _A	Operating free-air temperature	-55		125	°C

SLLS874-OCTOBER 2007

www.ti.com

ELECTRICAL CHARACTERISTICS

over recommended ranges of V_{CC}, V_{IC}, and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CO	MIN	TYP ⁽²⁾	MAX	UNIT		
V	Docitivo going ir	put throshold voltage	V _O = 2.5 V,	$V_{IC} = -3 V \text{ to } 3 V$			0.5	V	
vIT+	Fositive-going in	iput threshold voltage	I _{OH} = -400 μA	$V_{IC} = -15 \text{ V}$ to 15 V			1		
V	Negative-going input threshold voltage		V _O = 0.4 V,	$V_{IC} = -3 V \text{ to } 3 V$			-0.5	V	
VIT−			I _{OL} = 16 mA	$V_{IC} = -15 \text{ V}$ to 15 V			-1	v	
V	High-level outpu	it voltage	$V_{ID} = 1 V, V_{(STRB)} = 2.7$	1 V, I _{OH} = -400 μA	2.5	4.2	5.5	V	
VОН	nigh-level outpu	it voltage	$V_{ID} = 1 V, V_{(STRB)} = 0.4$	4 V, I _{OH} = -400 μA	2.5	4.2	5.5	v	
V _{OL}	Low-level output	t voltage	$V_{ID} = -1 V, V_{(STRB)} = 2$	1 V, I _{OL} = 16 mA		0.25	0.4	V	
			V _{IC} = 15 V			3	4.2		
II Input current		Inverting input	$V_{IC} = 0$		0	-0.5	mA		
	Input current		$V_{IC} = -15 V$		-3	-4.2			
	input current	Noninverting input	V _{IC} = 15 V		5	7			
			$V_{IC} = 0$		-1	-1.4			
			V _{IC} = -15 V		-7	-9.8			
I _{IH(STRB)}	High-level strob	e input current	V _(STRB) = 5.5 V				5	μΑ	
I _{IL(STRB)}	Low-level strobe	input current	$V_{(STRB)} = 0$			-1	-1.4	mA	
r.	Input	Inverting input			3.6	5		<u>۲</u> 0	
1	resistance Noninverting input			1.8	2.5		K12		
	Line-terminating resistance		$T_A = 25^{\circ}C$		120	170	250	Ω	
los	Short-circuit out	put current	$V_{CC} = 5.5 V,$	$V_{O} = 0$	-2.8	-4.5	-6.7	mA	
		V _{IC} = 15 V,	$V_{ID} = -1 V$		4.2	6			
I _{CC}	Supply current (average per receiver)	V _{IC} = 0,	$V_{ID} = -0.5 V$		6.8	10.2	mA	
				$V_{ID} = -1 V$		9.4	14		

 $\begin{array}{ll} \mbox{(1)} & \mbox{Unless otherwise noted, } V_{(STRB)} \geq 2.1 \mbox{ V or open.} \\ \mbox{(2)} & \mbox{All typical values are at } V_{CC} = 5 \mbox{ V, } V_{IC} = 0, \mbox{ and } T_A = 25^{\circ} C. \end{array}$

SWITCHING CHARACTERISTICS

 $V_{CC} = 5 \text{ V}, \text{ } T_A = 25^{\circ}\text{C}$

	PARAMETER	T	MIN	TYP	MAX	UNIT		
t _{PLH(D)}	Propagation delay time, low- to high-level output from differential input	$R_L = 400 \ \Omega,$	C _L = 15 pF,	See Figure 1		18	40	ns
t _{PHL(D)}	Propagation delay time, high- to low-level output from differential input	$R_L = 400 \ \Omega,$	C _L = 15 pF,	See Figure 1		31	45	ns
t _{PLH(S)}	Propagation delay time, low- to high-level output from STRB input	$R_L = 400 \ \Omega,$	C _L = 15 pF,	See Figure 1		9	30	ns
t _{PHL(S)}	Propagation delay time, high- to low-level output from STRB input	$R_L = 400 \ \Omega,$	C _L = 15 pF,	See Figure 1		15	25	ns

SN55182-SP

TEXAS INSTRUMENTS

www.ti.com

SLLS874-OCTOBER 2007

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

- A. The pulse generators have the following characteristics: $Z_0 = 50 \ \Omega$, $t_r \le 10 \ ns$, $t_f \le 10 \ ns$, $t_w = 0.5 \pm 0.1 \ \mu s$, PRR $\le 1 \ MHz$.
- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N3064 or equivalent.

Figure 1. Test Circuit and Voltage Waveforms

FEXAS

INSTRUMENTS

TEXAS INSTRUMENTS

www.ti.com

SLLS874-OCTOBER 2007

(1) Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

A. Figure 11 shows the maximum duration of the illustrated pulse that can be applied differently without the output changing from the low to high level.

Figure 11.

(1) Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

SLLS874-OCTOBER 2007

(1) Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

SLLS874-OCTOBER 2007

www.ti.com

APPLICATION INFORMATION

NOTES: A. When the inputs are open circuited, the output is high. A capacitor may be used for dc isolation of the line-terminating resistor. At the frequency of operation, the impedance of the capacitor should be relatively small.

$$\begin{split} \text{Example: let} & f = 5 \text{ MHz} \\ & C = 0.002 \ \mu\text{F} \\ \text{Z}_{(C)} &= \frac{1}{2\pi fC} = \frac{1}{2\pi (5 \ \times \ 10^6) (0.002 \ \times \ 10^{-6})} \\ \text{Z}_{(C)} &\approx \ 16\Omega \end{split}$$

B. Use of a capacitor to control response time is optional.

Figure 14. Transmission of Digital Data Over Twisted-Pair Line

4-Feb-2021

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
							(6)				
5962-7900801VCA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-7900801VC A SNV55182J	Samples
5962-7900801VDA	ACTIVE	CFP	W	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-7900801VD A SNV55182W	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

4-Feb-2021

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

10-Mar-2022

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
5962-7900801VDA	W	CFP	14	25	506.98	26.16	6220	NA

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F14

GENERIC PACKAGE VIEW

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

J0014A

PACKAGE OUTLINE

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

NOTES:

- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.

J0014A

EXAMPLE BOARD LAYOUT

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated