www.ti.com

# HIGH-SPEED DIFFERENTIAL LINE DRIVER

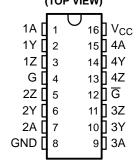
### **FEATURES**

### Designed for Signaling Rates

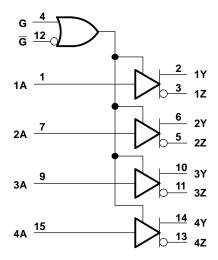
NOTE: The signaling rate is the number of voltage transitions that can be made per second.

#### Up to 150 Mbps

- Low-Voltage Differential Signaling With Typical Output Voltage of 700 mV and a 100- $\Omega$  Load
- Propagation Delay Time of 2.3 ns, Typical
- Single 3.3-V Supply Operation
- One Driver's Power Dissipation at 75 MHz, 50 mW, Typical
- High-Impedance Outputs When Disabled or With V<sub>CC</sub> < 1.5 V</li>
- Bus-Pin ESD Protection Exceeds 12 kV
- Low-Voltage CMOS (LVCMOS) Logic Input Levels Are 5-V Tolerant


#### DESCRIPTION

The SN65LVDM31 incorporates four differential line drivers that implement the electrical characteristics of low-voltage differential signaling. This product offers a low-power alternative to 5-V PECL drivers with similar signal levels. Any of the four current-mode drivers will deliver a minimum differential output voltage magnitude of 540 mV into a 100- $\Omega$  load when enabled by either an active-low or active-high enable input.


The intended application of this device and signaling technique is for both point-to-point and multiplexed baseband data transmission over controlled impedance media of approximately 100  $\Omega$ . The transmission media may be printed-circuit board traces, backplanes, or cables. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

The SN65LVDM31 is characterized for operation from –40°C to 85°C.

#### SN65LVDM31D (Marked as LVDM31) (TOP VIEW)



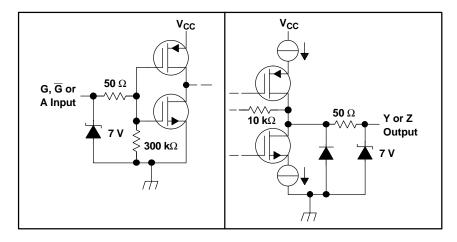
#### **FUNCTIONAL BLOCK DIAGRAM**



#### **FUNCTION TABLE**

| INPUT | ENA | BLES | OUTI | PUTS |
|-------|-----|------|------|------|
| Α     | G   | G    | Y    | Z    |
| Н     | Н   | Х    | Н    | L    |
| L     | Н   | Х    | L    | Н    |
| Н     | Х   | L    | Н    | L    |
| L     | Х   | L    | L    | Н    |
| X     | L   | Н    | Z    | Z    |
| Open  | Н   | Х    | L    | Н    |
| Open  | Χ   | L    | L    | Н    |




Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.





These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

### **EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS**



#### **ABSOLUTE MAXIMUM RATINGS**

over operating free-air temperature range (unless otherwise noted)(1)

|                       |                                           | UNIT                         |  |
|-----------------------|-------------------------------------------|------------------------------|--|
| Supply voltage range  | e V <sub>CC</sub> <sup>(2)</sup>          | –0.5 V to 4 V                |  |
| Input voltage range   | Inputs                                    | –0.5 V to 6 V                |  |
|                       | Y or Z                                    | –0.5 V to 4 V                |  |
| Electrostatic dischar | ge <sup>(3)</sup> : Y, Z, and GND         | Class 3, A:12 kV, B:600 V    |  |
|                       |                                           | See Dissipation Rating Table |  |
| Storage temperature   | range                                     | −65°C to 150°C               |  |
| Lead temperature 1,   | 6 mm (1/16 inch) from case for 10 seconds | 260°C                        |  |

<sup>(1)</sup> Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

#### **DISSIPATION RATING TABLE**

| PACKAGE | T <sub>A</sub> ≤ 25°C | OPERATING FACTOR <sup>(1)</sup> | T <sub>A</sub> = 85°C |
|---------|-----------------------|---------------------------------|-----------------------|
|         | POWER RATING          | ABOVE T <sub>A</sub> = 25°C     | POWER RATING          |
| D       | 950 mW                | 7.6 mW/°C                       | 494 mW                |

<sup>(1)</sup> This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

## RECOMMENDED OPERATING CONDITIONS

|                |                                | MIN | NOM | MAX | UNIT |
|----------------|--------------------------------|-----|-----|-----|------|
| $V_{CC}$       | Supply voltage                 | 3   | 3.3 | 3.6 | V    |
| $V_{IH}$       | High-level input voltage       | 2.0 |     |     | V    |
| $V_{IL}$       | Low-level input voltage        |     |     | 0.8 | V    |
| T <sub>A</sub> | Operating free-air temperature | 40  |     | 85  | °C   |

<sup>(2)</sup> All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

<sup>(3)</sup> Tested in accordance with MIL-STD-883C Method 3015.7.



## **ELECTRICAL CHARACTERISTICS**

over recommended operating conditions (unless otherwise noted)

|                     | PARAMETER                                                              | TEST CON                       | DITIONS                  | MIN  | TYP <sup>(1)</sup> | MAX | UNIT |
|---------------------|------------------------------------------------------------------------|--------------------------------|--------------------------|------|--------------------|-----|------|
| IV/ I               | Differential output voltage magnitude                                  | $R_L = 100 \Omega$ ,           | See Figure 2             | 540  | 700                | 860 | mV   |
| V <sub>OD</sub>     | Differential output voltage magnitude                                  | $R_L = 50 \Omega$ ,            | See Figure 2             | 270  | 350                | 430 | IIIV |
| $\Delta  V_{OD} $   | Change in differential output voltage magnitude between logic states   | See Figure 2                   |                          | -25  | 0                  | 25  | mV   |
| V <sub>OC(SS)</sub> | Steady-state common-mode output voltage                                |                                |                          | 1.14 | 1.2                | 1.3 | V    |
| $\Delta V_{OC(SS)}$ | Change in steady-state common-mode output voltage between logic states | See Figure 3                   | See Figure 3             |      | 0                  | 30  | mV   |
| $V_{OC(PP)}$        | Peak-to-peak common-mode output voltage                                |                                |                          |      | 70                 | 100 |      |
|                     |                                                                        | Enabled, No load               |                          |      | 6                  | 10  |      |
| $I_{CC}$            | Supply current                                                         | Enabled, $R_L = 100 \Omega$    | $V_{IN} = 0$ or $V_{CC}$ |      | 35                 | 40  | mA   |
|                     |                                                                        | Disabled                       |                          |      | 0.5                | 0.7 |      |
| I <sub>IH</sub>     | High-level input current                                               | V <sub>IH</sub> = 3 V          |                          | -10  | 3                  | 10  | μΑ   |
| I <sub>IL</sub>     | Low-level input current                                                | $V_{IL} = 0 V$                 |                          | -10  | 0                  | 10  | μΑ   |
|                     | Chart aircuit autaut aureat                                            | $V_{OY}$ or $V_{OZ} = 0$ V     |                          |      | 7                  | 10  |      |
| Ios                 | Short-circuit output current                                           | $V_{OD} = 0 V$                 |                          | 7    | 10                 | mA  |      |
| I <sub>OZ</sub>     | High-impedance state output current                                    | $V_O = 0 \text{ V or } V_{CC}$ |                          |      |                    | ±1  | μΑ   |
| I <sub>O(OFF)</sub> | Power-off output current                                               | V <sub>CC</sub> = 1.5 V,       | V <sub>O</sub> = 3.6 V   |      |                    | ±1  | μΑ   |

<sup>(1)</sup> All typical values are at 25°C and with a 3.3-V supply.

### **SWITCHING CHARACTERISTICS**

over recommended operating conditions (unless otherwise noted)

|                     | PARAMETER                                                   | TEST CONDITIONS                            | MIN | TYP | MAX | UNIT |
|---------------------|-------------------------------------------------------------|--------------------------------------------|-----|-----|-----|------|
| t <sub>PLH</sub>    | Propagation delay time, low-to-high-level output            |                                            | 1.8 | 2.3 | 2.9 | ns   |
| t <sub>PHL</sub>    | Propagation delay time, high-to-low-level output            |                                            | 1.8 | 2.3 | 2.9 | ns   |
| t <sub>r</sub>      | Differential output signal rise time                        | Soo Figure 4                               | 0.4 | 0.6 | 1.0 | ns   |
| t <sub>f</sub>      | Differential output signal fall time                        | See Figure 4                               | 0.4 | 0.6 | 1.0 | ns   |
| t <sub>sk(p)</sub>  | Pulse skew ( t <sub>PHL</sub> - t <sub>PLH</sub>  )         | v ( t <sub>PHL</sub> - t <sub>PLH</sub>  ) |     |     |     | ps   |
| t <sub>sk(o)</sub>  | Channel-to-channel output skew <sup>(1)</sup>               |                                            |     |     | 200 | ps   |
| t <sub>sk(pp)</sub> | Part-to-part skew (2)                                       |                                            |     |     | 1   | ns   |
| t <sub>PZH</sub>    | Propagation delay time, high-impedance-to-high-level output |                                            |     | 6   | 15  | ns   |
| t <sub>PZL</sub>    | Propagation delay time, high-impedance-to-low level output  | See Figure 5                               |     | 6   | 15  | ns   |
| t <sub>PHz</sub>    | Propagation delay time, high-level-to-high-impedance output |                                            |     | 6   | 15  | ns   |
| t <sub>PLZ</sub>    | Propagation delay time, low-level-to-high-impedance output  |                                            |     | 6   | 15  | ns   |

<sup>(1)</sup>  $t_{sk(o)}$  is the maximum delay time difference between drivers on the same device.

<sup>(2)</sup>  $t_{sk(pp)}$  is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.



### PARAMETER MEASUREMENT INFORMATION

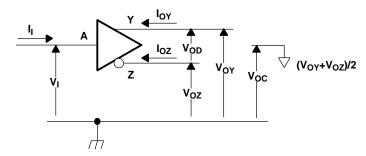



Figure 1. Driver Voltage and Current Definitions

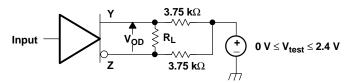
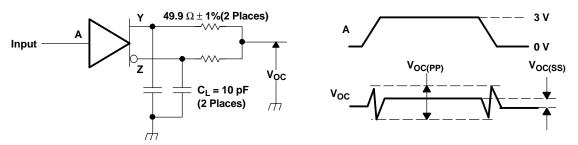
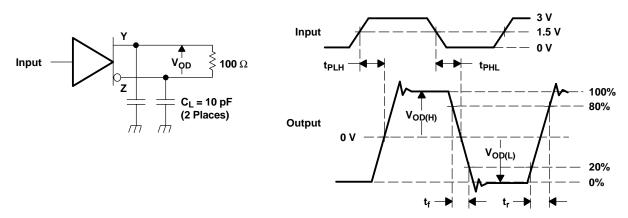
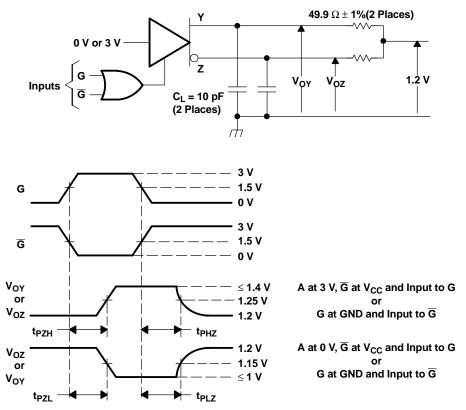





Figure 2. V<sub>OD</sub> Test Circuit



NOTE: All input pulses are supplied by a generator having the following characteristics:  $t_r$  or  $t_f \le 1$  ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ±10 ns.  $C_L$  includes instrumentation and fixture capacitance within 0,06 mm of the DUT. The measurement of  $V_{OC(PP)}$  is made on test equipment with a -3 dB bandwidth of at least 300 MHz.

Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage



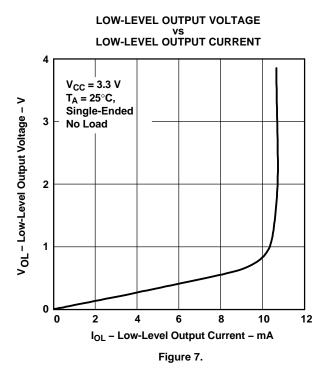

NOTE: All input pulses are supplied by a generator having the following characteristics:  $t_r$  or  $t_f \le 1$  ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ±0.2 ns.  $C_L$  includes instrumentation and fixture capacitance within 0,06 mm of the DUT.

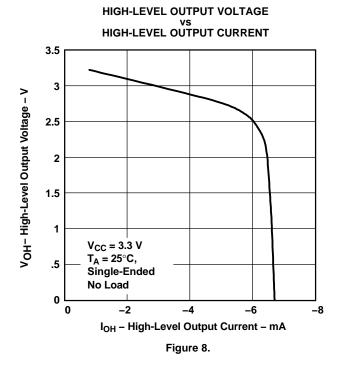
Figure 4. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal



## PARAMETER MEASUREMENT INFORMATION (continued)



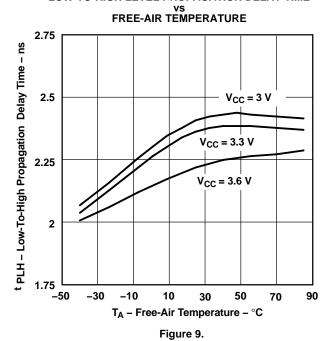

NOTE: All input pulses are supplied by a generator having the following characteristics:  $t_r$  or  $t_f \le 1$  ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ±10 ns.  $C_L$  includes instrumentation and fixture capacitance within 0,06 mm of the DUT.


Figure 5. Enable and Disable Time Circuit and Definitions

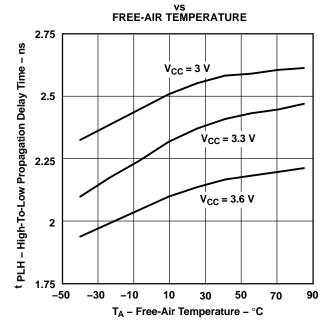


## **TYPICAL CHARACTERISTICS**

SUPPLY CURRENT **FREQUENCY** 70 60  $V_{CC} = 3.6 \text{ V}$ I CC - Supply Current - mA 50  $V_{CC} = 3 \text{ V}$ 40  $V_{CC} = 3.3 \text{ V}$ 30 20 10 0 150 200 300 f - Frequency - MHz Figure 6.






## **TYPICAL CHARACTERISTICS (continued)**

## LOW-TO-HIGH LEVEL PROPAGATION DELAY TIME



## HIGH-TO-LOW LEVEL PROPAGATION DELAY TIME





## PACKAGE OPTION ADDENDUM

10-Dec-2020

#### PACKAGING INFORMATION

www.ti.com

| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|-------------------------|---------|
|                  |        |              |                    |      |                |              | (6)                           |                    |              |                         |         |
| SN65LVDM31D      | ACTIVE | SOIC         | D                  | 16   | 40             | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -40 to 85    | LVDM31                  | Samples |
| SN65LVDM31DG4    | ACTIVE | SOIC         | D                  | 16   | 40             | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -40 to 85    | LVDM31                  | Samples |
| SN65LVDM31DR     | ACTIVE | SOIC         | D                  | 16   | 2500           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -40 to 85    | LVDM31                  | Samples |

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

**Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.



## **PACKAGE OPTION ADDENDUM**

10-Dec-2020

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

# **PACKAGE MATERIALS INFORMATION**

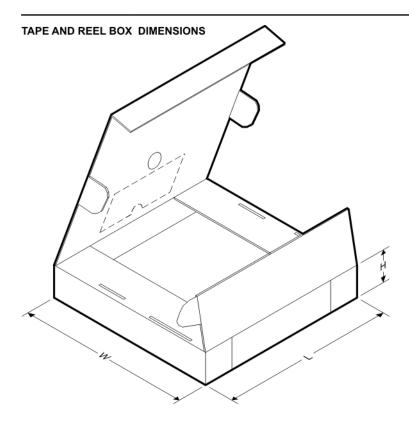
www.ti.com 5-Jan-2022

## TAPE AND REEL INFORMATION





|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
|    | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |


## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

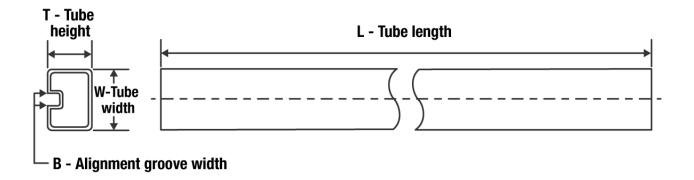


### \*All dimensions are nominal

| Device       | Package<br>Type | Package<br>Drawing |    |      | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| SN65LVDM31DR | SOIC            | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |

www.ti.com 5-Jan-2022




#### \*All dimensions are nominal

| ĺ | Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---|--------------|--------------|-----------------|------|------|-------------|------------|-------------|
|   | SN65LVDM31DR | SOIC         | D               | 16   | 2500 | 350.0       | 350.0      | 43.0        |

# PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022

## **TUBE**



#### \*All dimensions are nominal

| Device        | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) |
|---------------|--------------|--------------|------|-----|--------|--------|--------|--------|
| SN65LVDM31D   | D            | SOIC         | 16   | 40  | 505.46 | 6.76   | 3810   | 4      |
| SN65LVDM31DG4 | D            | SOIC         | 16   | 40  | 505.46 | 6.76   | 3810   | 4      |

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated