

SN74LVC112A

SCAS289M – JANUARY 1993 – REVISED DECEMBER 2014

SN74LVC112A Dual Negative-Edge-Triggered J-K Flip-Flop With Clear And Preset

1 Features

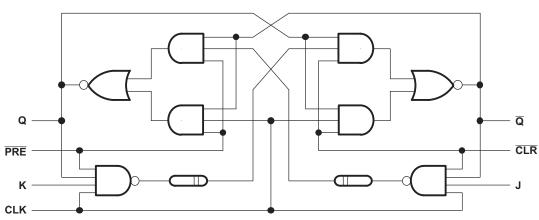
- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 4.8 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 > 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 3000-V Human-Body Model
 - 200-V Machine Model
 - 1500-V Charged-Device Model

2 Applications

Tools &

Software

- Servers
- PCs
- Notebooks
- Network switches
- Toys
- I/O Expanders
- Electronic Points of Sale


3 Description

This dual negative-edge-triggered J-K flip-flop is designed for 1.65-V to 3.6-V V_{CC} operation.

....

Device Information ⁽¹⁾								
PART NUMBER	PACKAGE	BODY SIZE (NOM)						
	SSOP (16)	6.50 mm x 5.30 mm						
	TSSOP (16)	5.00 mm x 4.40 mm						
	TVSOP (16)	3.60 mm x 4.40 mm						
SN74LVC112A	SOP (16)	10.20 mm x 5.30 mm						
	SOIC (16)	9.00 mm x 3.90 mm						

(1) For all available packages, see the orderable addendum at the end of the datasheet.

4 Simplified Schematic

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

2

Table of Contents

1	Feat	ures 1
2	App	lications 1
3	Desc	cription 1
4	Sim	olified Schematic1
5	Revi	sion History 2
6	Pin (Configuration and Functions 3
7	Spee	cifications 4
	7.1	Absolute Maximum Ratings 4
	7.2	ESD Ratings 4
	7.3	Recommended Operating Conditions 5
	7.4	Thermal Information 5
	7.5	Electrical Characteristics 6
	7.6	Timing Requirements, -40°C to 85°C 6
	7.7	Timing Requirements, -40°C to 125°C 6
	7.8	Switching Characteristics, -40°C to 85°C7
	7.9	Switching Characteristics, -40°C to 125°C7
	7.10	Operating Characteristics7
	7.11	Typical Characteristics 7

8	Para	meter Measurement Information	8
9	Deta	iled Description	9
	9.1	Overview	9
	9.2	Functional Block Diagram	9
	9.3	Feature Description	9
	9.4	Device Functional Modes	9
10	Арр	lication and Implementation	10
	10.1	Application Information	10
	10.2	Typical Application	10
11	Pow	er Supply Recommendations	11
12	Layo	out	12
	12.1	Layout Guidelines	12
	12.2	Layout Example	12
13	Devi	ice and Documentation Support	12
	13.1	Trademarks	12
	13.2	Electrostatic Discharge Caution	12
	13.3	Glossary	12
14	Мес	hanical, Packaging, and Orderable	
	Infor	mation	12

5 Revision History

Changes from Revision L (August 2004) to Revision M

•	Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Typical Characteristics, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and	
	Mechanical, Packaging, and Orderable Information section.	. 1
•	Deleted Ordering Information table.	. 1
•	Changed MAX operating temperature to 125°C in Recommended Operating Conditions table.	. 5
•	Added –40°C to 125°C temperature range to Electrical Specifications table.	. 6
•	Added Timing Requirements table for -40°C to 125°C temperature range	. 6
	Added Switching Characteristics table for -40°C to 125°C temperature range.	

www.ti.com

Page

SCAS289M – JANUARY 1993 – REVISED DECEMBER 2014

6 Pin Configuration and Functions

D, DB, DGV, NS, OR PW PACKAGE (TOP VIEW)										
1CLK [1K [1J [1PRE [1Q [1Q [2Q [GND [1 2 3 4 5 6 7 8	14 13 12 11	V _{CC} 1CLR 2CLR 2CLK 2K 2J 2PRE 2Q							

Pin Functions

PIN		TYPE	DESCRIPTION					
NO.	NAME	TIPE	DESCRIPTION					
1	1CLK	I	1 Clock					
2	1K	I	1K Input					
3	1J	I	1J Input					
4	1PRE	I	1 Preset					
5	1Q	0	1Q Output. Pull low to set 1Q high and $1\overline{Q}$ low upon power-up.					
6	1Q	0	1Q Output					
7	2 Q	0	2Q Output					
8	GND	—	Ground Pin					
9	2Q	0	2Q Output					
10	2PRE	I	2 Preset					
11	2J	I	2J Input. Pull low to set 2Q high and $2\overline{Q}$ low upon power-up.					
12	2K	I	2K Input					
13	2CLK	I	2 Clock					
14	2CLR	I	2 Clear					
15	1CLR	I	1 Clear. Pull low to set 2Q low and $2\overline{Q}$ high upon power-up.					
16	V _{CC}	_	Power Pin. Pull low to set 1Q low and $1\overline{Q}$ high upon power-up.					

TEXAS INSTRUMENTS

www.ti.com

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

				MIN	MAX	UNIT
V _{CC}	Supply voltage range			-0.5	6.5	V
VI	Input voltage range ⁽²⁾	Input voltage range ⁽²⁾			6.5	V
Vo	Output voltage range ^{(2) (3)}	Output voltage range ^{(2) (3)}		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0			-50	mA
I _{OK}	Output clamp current	V _O < 0			-50	mA
I _O	Continuous output current				±50	mA
	Continuous current through V _{CC} or GND				±100	mA
T _{stg}	Storage temperature range				150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the *Recommended Operating Conditions* table.

7.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	3000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all $\ensuremath{\text{pins}}^{(2)}$	1500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V	Supply voltage	Operating	1.65	3.6	V
V _{CC}	Supply voltage	Data retention only	1.5		v
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	$0.65 \times V_{CC}$		
V _{IH}	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		V
		V_{CC} = 2.7 V to 3.6 V	2		
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	
V _{IL}	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	V
V _{IL} L V _I II V _O C		$V_{CC} = 2.7 V \text{ to } 3.6 V$		0.8	
VI	Input voltage		0	5.5	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 1.65 V		-4	
		$V_{CC} = 2.3 V$		-8	
OH	High-level output current	$V_{CC} = 2.7 V$		-12	mA
		$V_{CC} = 3 V$		-24	
		V _{CC} = 1.65 V		4	
		$V_{CC} = 2.3 V$		8	
I _{OL}	Low-level output current	$V_{CC} = 2.7 V$		12	mA
		$V_{CC} = 3 V$		24	
Δt/Δv	Input transition rise or fall rate	· · · · ·		10	ns/V
T _A	Operating free-air temperature		-40	125	°C

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs (SCBA004).

7.4 Thermal Information

			SN74LVC112A					
	THERMAL METRIC ⁽¹⁾	D	DB	DGV	NS	PW	UNIT	
		24 PINS						
$R_{\theta JA}$	Junction-to-ambient thermal resistance	90.6	107.1	129.0	90.7	122.6		
R _{θJC(to}	Junction-to-case (top) thermal resistance	50.9	59.6	52.1	48.3	51.4		
$R_{\theta JB}$	Junction-to-board thermal resistance	44.8	54.4	62.0	49.4	64.4	°C/W	
Ψ _{JT}	Junction-to-top characterization parameter	14.7	20.5	6.5	14.6	6.7		
ψ_{JB}	Junction-to-board characterization parameter	44.5	53.8	61.3	49.1	63.8		

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.

SN74LVC112A

SCAS289M-JANUARY 1993-REVISED DECEMBER 2014

www.ti.com

TRUMENTS

XAS

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	RAMETER TEST CONDITIONS V_{CC} $T_A = 25^{\circ}C$ $-40^{\circ}C$ to $85^{\circ}C$ $-40^{\circ}C$ to 125					25°C				
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP ⁽¹⁾	MAX	MIN	MAX	MIN	MAX 2 2 7 2 4	UNIT
	I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} – 0.2			V _{CC} – 0.2		V _{CC} – 0.2		
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2			1.2		1.2		
V _{OH}	$I_{OH} = -8 \text{ mA}$	2.3 V	1.7			1.7		1.7		V
	1 10 1	2.7 V	2.2			2.2		2.2		
	$I_{OH} = -12 \text{ mA}$	3 V	2.4			2.4		2.4		
	I _{OH} = -24 mA	3 V	2.2			2.2		2.2		
	I _{OL} = 100 μA	1.65 V to 3.6 V			0.2		0.2		0.2	
V _{OL}	$I_{OL} = 4 \text{ mA}$	1.65 V			0.45		0.45		0.45	V
VOL	I _{OL} = 8 mA	2.3 V			0.7		0.7		0.7	·
	I _{OL} = 12 mA	2.7 V			0.4		0.4		0.4	
	I _{OL} = 24 mA	3 V			0.55		0.55		0.55	
I _I	V _I = 5.5 V or GND	3.6 V			±5		±5		±5	μA
I _{CC}		3.6 V			10		10		10	μA
ΔI _{CC}	One input at $V_{CC} - 0.6 V$, Other inputs at V_{CC} or GND	2.7 V to 3.6 V			500		500		500	μA
Ci	$V_{I} = V_{CC}$ or GND	3.3 V		4.5						pF

(1) All typical values are at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}C$.

7.6 Timing Requirements, -40°C to 85°C

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

					V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency			120		150		150		150	MHz
tw	Pulse duration, CLK high or low		4.2		3.3		3.3		3.3		ns
	Cature time	Data before CLK↓	5.8		3.2		3.1		2.3		
t _{su}	Setup time	PRE or CLR inactive	5		2.8		2.4		1.1		ns
t _h	Hold time, data after $CLK\downarrow$	·	6.2		4.4		2.5		0.7		ns

7.7 Timing Requirements, -40°C to 125°C

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

	1 0	1 0	`			, ,	<u> </u>	,			
			V _{CC} = ± 0.1		V _{CC} = 2 ± 0.2		V _{CC} =	2.7 V	V _{CC} = 3 ± 0.3	3.3 V 5 V	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency		120		150		150		150	MHz	
tw	Pulse duration, CLK high or	low	4.1		3.3		3.3		3.3		ns
	Cotup time	Data before CLK↓	6		3.2		3.1		2.3		20
t _{su}	Setup time PRE or CLR inactive		5		2.8		2.4		1.1		ns
t _h	Hold time, data after CLK↓				4.7		2.5		0.7		ns

7.8 Switching Characteristics, -40°C to 85°C

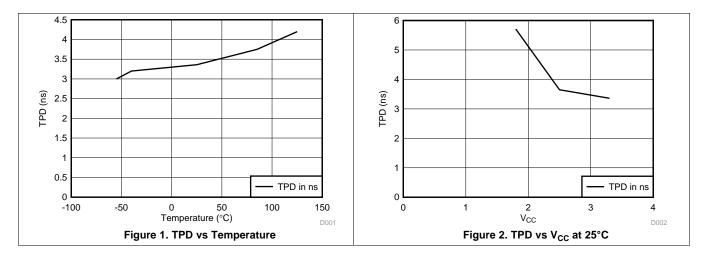
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1		V _{CC} = 2 ± 0.2	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} =	3.3 V ± ().3 V	UNIT
	(INPOT)	(001201)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	TYP	MAX	
f _{max}			150		150		150		150			MHz
	CLR or PRE	Q or \overline{Q}		5.9		4.1		5.5	1	3.4	4.8	20
t _{pd}	CLK			5.6		4		7.1	1	3.5	5.9	ns

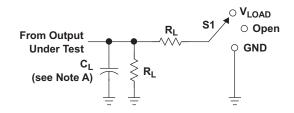
7.9 Switching Characteristics, -40°C to 125°C

over operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT) V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		$V_{CC} = 3.3 V \pm 0.3 V$			UNIT	
		(001201)	MIN		MIN	MAX	MIN	MAX	MIN	TYP	MAX	
f _{max}			120		150		150		150			MHz
	CLR or PRE	Q or Q		6.2		4		6	1	3.4	5.3	~~
t _{pd}	CLK	QUIQ		6.2		4.1		7.6	1	3.5	6.4	ns

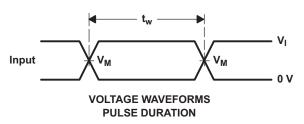

7.10 Operating Characteristics

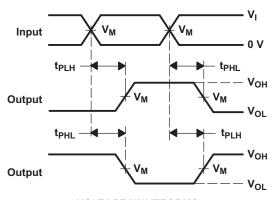
 $T_A = 25^{\circ}C$

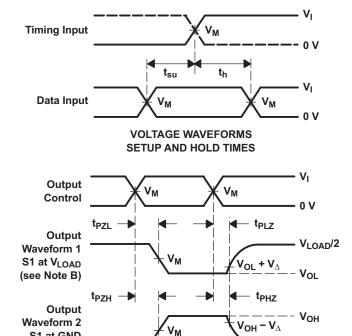

	PARAMETER	TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	See ⁽¹⁾	See ⁽¹⁾	24	pF

(1) This information was not available at the time of publication.

7.11 Typical Characteristics


Parameter Measurement Information 8




LOAD CIRCUIT

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

	INF	PUTS	N N	N.	•	1	N
V _{CC}	VI	t _r /t _f	VM	V _{LOAD}	CL	RL	V_{Δ}
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{CC} /2	2 × V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V ± 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	2 × V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V ± 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

VOLTAGE WAVEFORMS

ENABLE AND DISABLE TIMES

LOW- AND HIGH-LEVEL ENABLING

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .

S1 at GND

(see Note B)

- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

8

≈0 V

9 Detailed Description

9.1 Overview

This dual negative-edge-triggered J-K flip-flop is designed for 1.65-V to 3.6-V V_{CC} operation.

A low level at the preset (PRE) or clear (CLR) inputs sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the J and K inputs meeting the setup-time requirements is transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the J and K inputs can be changed without affecting the levels at the outputs. The SN74LVC112A can perform as a toggle flip-flop by tying J and K high.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

9.2 Functional Block Diagram

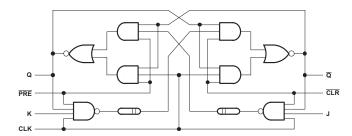


Figure 4. Logic Diagram, Each Flip-Flop (Positive Logic)

9.3 Feature Description

- Wide operating voltage range
 - Operates from 1.65 V to 3.6 V
- Allows down voltage translation
- Inputs accept voltages to 5.5 V
- I_{off} feature
 - Allows voltages on the inputs and outputs when V_{CC} is 0 V

9.4 Device Functional Modes

		INPUTS			OUTI	PUTS
PRE	CLR	CLK	J	К	q	Q
L	Н	Х	Х	Х	Н	L
Н	L	Х	Х	Х	L	Н
L	L	Х	Х	Х	H ⁽¹⁾	H ⁽¹⁾
Н	Н	\downarrow	L	L	Q_0	
н	н	\downarrow	Н	L	Н	L
Н	Н	\downarrow	L	н	L	н
н	н	\downarrow	Н	Н	Тор	ggle
н	н	Н	Х	Х	Q_0	\overline{Q}_0

Table 1. Function Table

(1) The output levels in this configuration may not meet the minimum levels for V_{OH}. Furthermore, this configuration is nonstable; that is, it does not persist when either PRE or CLR returns to its inactive (high) level.

10 Application and Implementation

10.1 Application Information

SN74LVC112A is a high-drive CMOS device that can be used for a multitude of bus interface type applications where the data needs to be retained or latched. It can produce 24 mA of drive current at 3.3 V, making it Ideal for driving multiple outputs and good for high-speed applications up to 150 MHz. The inputs are 5.5-V tolerant allowing it to translate down to V_{CC} .

10.2 Typical Application

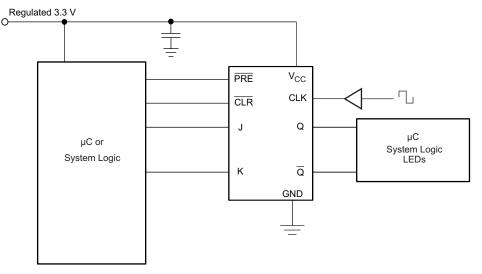


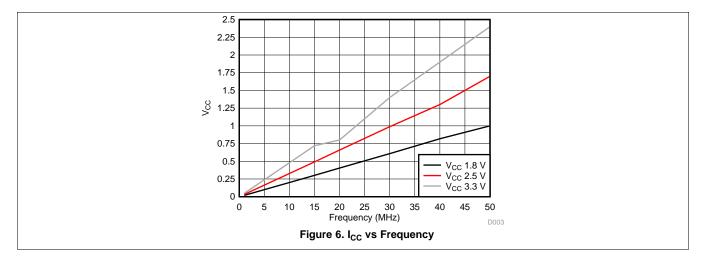
Figure 5. Typical Application Schematic

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.

10.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - For rise time and fall time specifications, see Δt/ΔV in the Recommended Operating Conditions table.
 - For specified High and low levels, see V_{IH} and V_{IL} in the *Recommended Operating Conditions* table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.
- 2. Recommend Output Conditions
 - Load currents should not exceed 50 mA per output and 100 mA total for the part.
 - Outputs should not be pulled above V_{CC} .



SCAS289M – JANUARY 1993 – REVISED DECEMBER 2014

www.ti.com

Typical Application (continued)

10.2.3 Application Curves

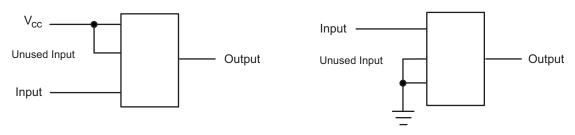
11 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended. If there are multiple V_{CC} pins, 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

TEXAS INSTRUMENTS

www.ti.com


12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in Figure 7 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is acceptable to float outputs unless the part is a transceiver.

12.2 Layout Example

13 Device and Documentation Support

13.1 Trademarks

All trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LVC112AD	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC112A	Samples
SN74LVC112ADBR	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC112A	Samples
SN74LVC112ADGVR	ACTIVE	TVSOP	DGV	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC112A	Samples
SN74LVC112ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC112A	Samples
SN74LVC112ADT	ACTIVE	SOIC	D	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC112A	Samples
SN74LVC112ANSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC112A	Samples
SN74LVC112APW	ACTIVE	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC112A	Samples
SN74LVC112APWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC112A	Samples
SN74LVC112APWT	ACTIVE	TSSOP	PW	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC112A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

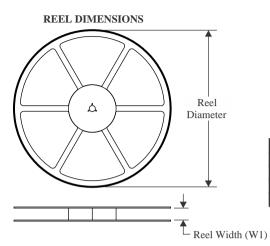
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

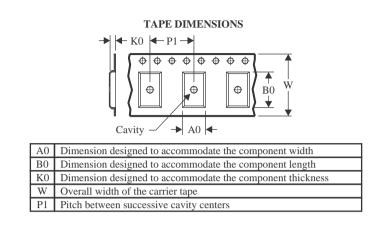
PACKAGE OPTION ADDENDUM

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

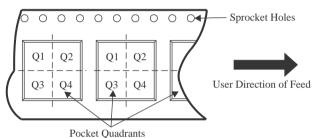
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

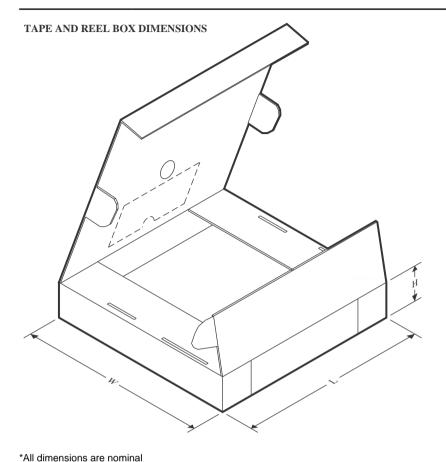


Texas


STRUMENTS

TAPE AND REEL INFORMATION

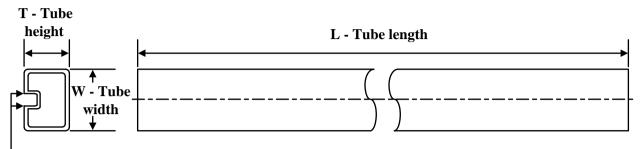
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC112ADBR	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74LVC112ADGVR	TVSOP	DGV	16	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
SN74LVC112ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LVC112ANSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LVC112APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LVC112APWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

3-Jun-2022


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC112ADBR	SSOP	DB	16	2000	356.0	356.0	35.0
SN74LVC112ADGVR	TVSOP	DGV	16	2000	356.0	356.0	35.0
SN74LVC112ADR	SOIC	D	16	2500	340.5	336.1	32.0
SN74LVC112ANSR	SO	NS	16	2000	356.0	356.0	35.0
SN74LVC112APWR	TSSOP	PW	16	2000	356.0	356.0	35.0
SN74LVC112APWT	TSSOP	PW	16	250	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

3-Jun-2022

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SN74LVC112AD	D	SOIC	16	40	507	8	3940	4.32
SN74LVC112APW	PW	TSSOP	16	90	530	10.2	3600	3.5

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

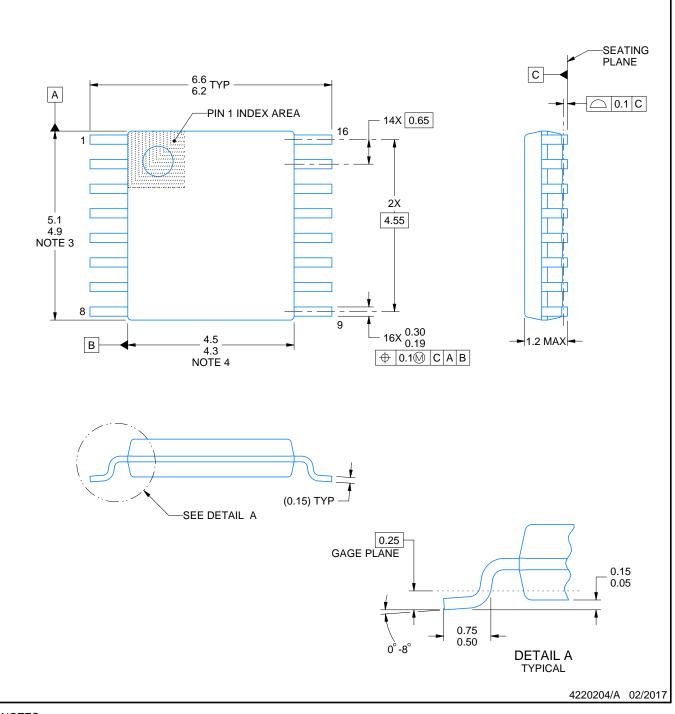
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


PW0016A

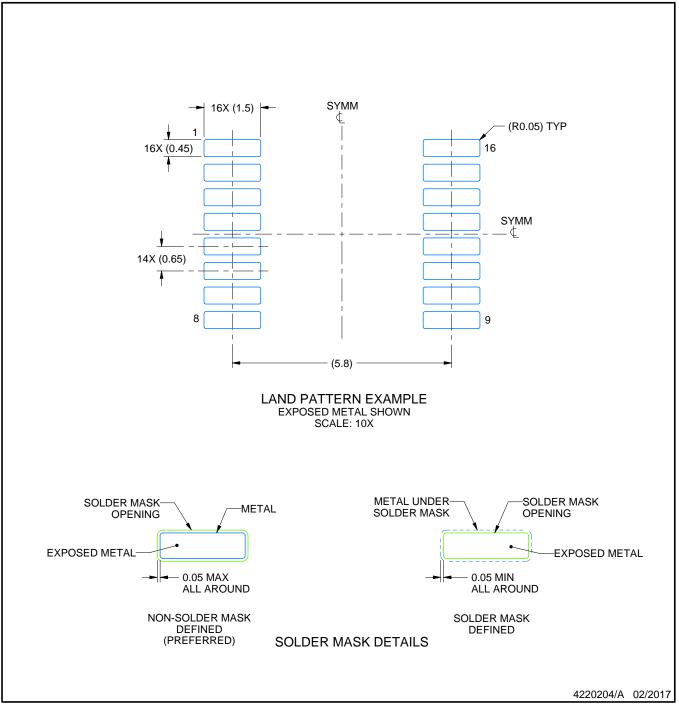
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

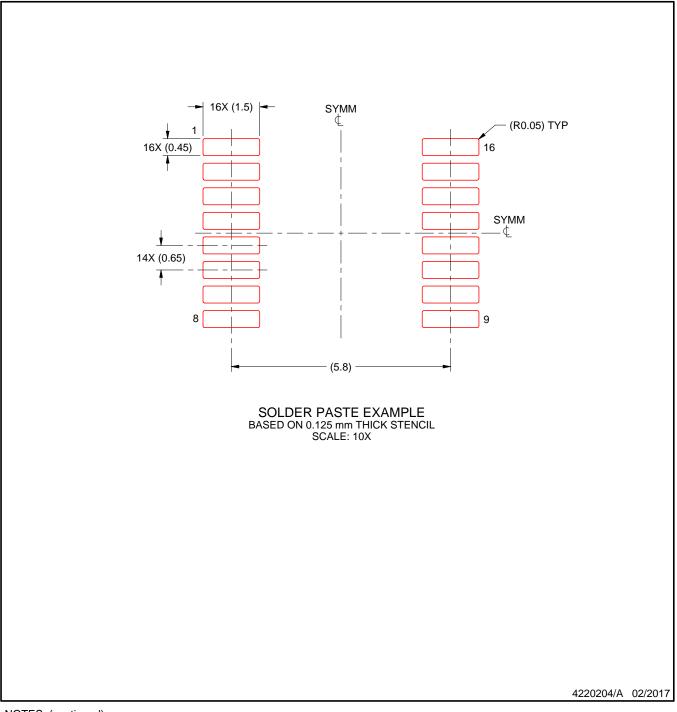
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

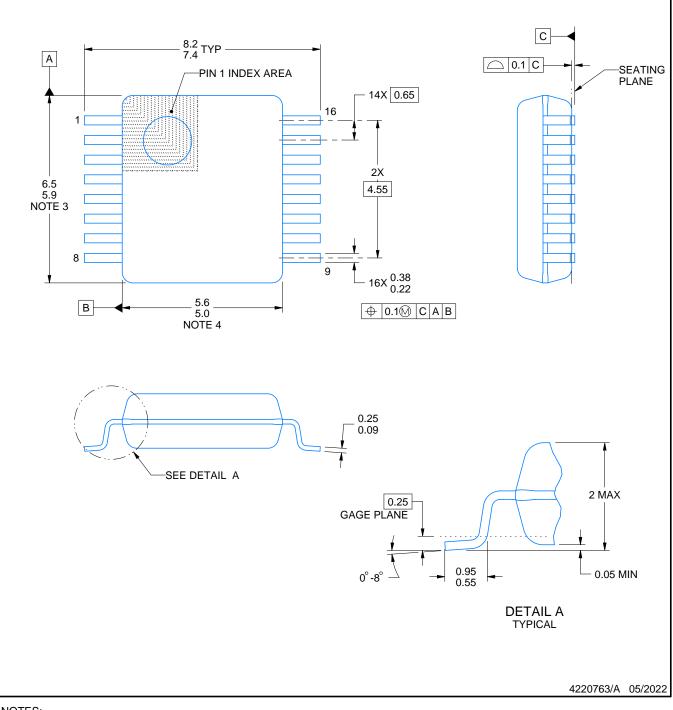
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


DB0016A

PACKAGE OUTLINE

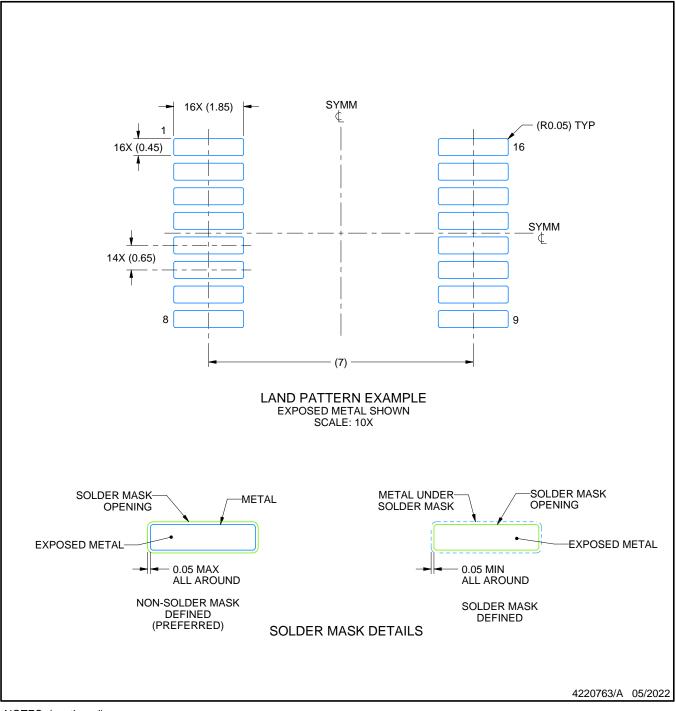
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-150.



DB0016A

EXAMPLE BOARD LAYOUT

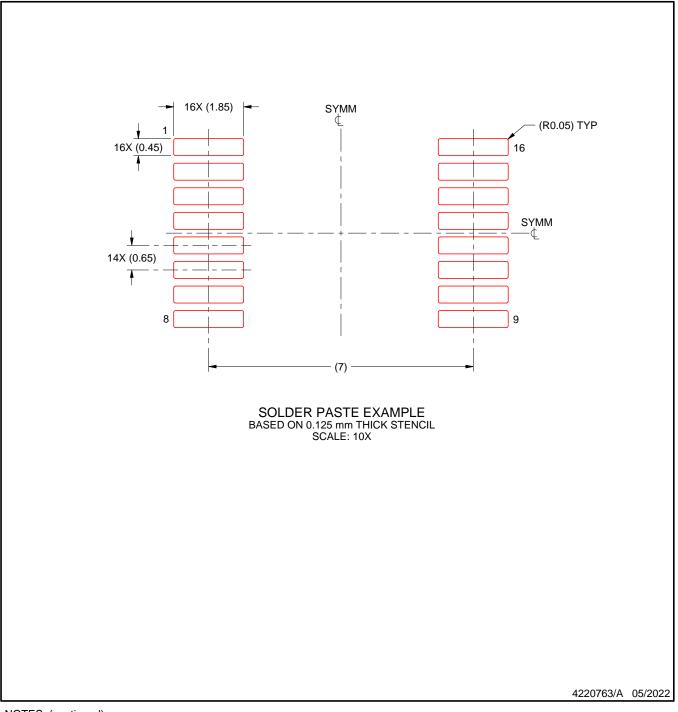
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DB0016A

EXAMPLE STENCIL DESIGN

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Board assembly site may have different recommendations for stencil design.

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

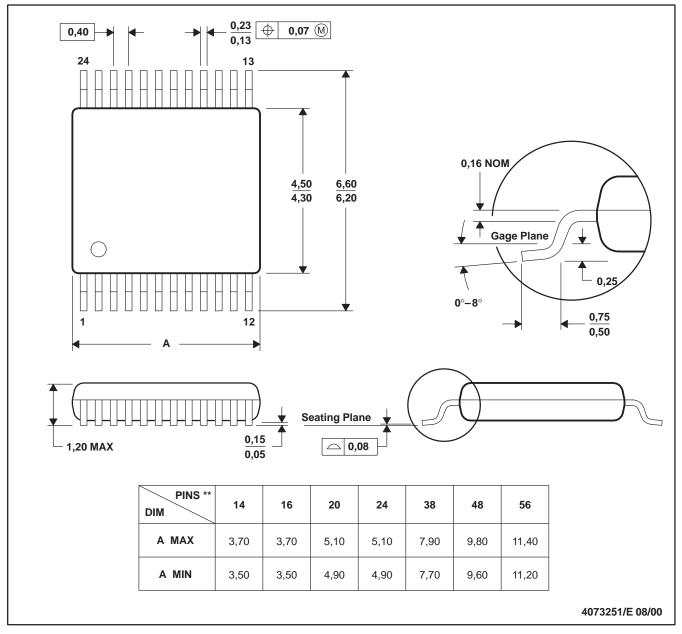
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

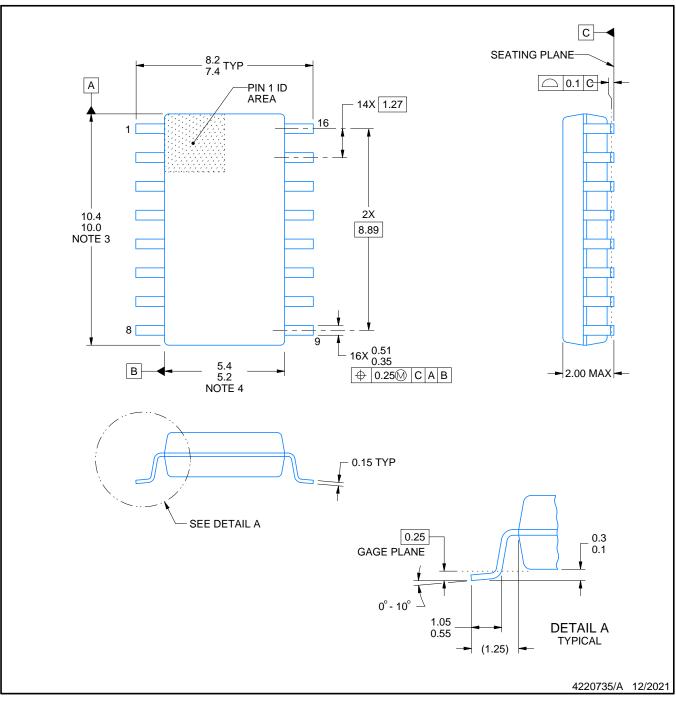
24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194


NS0016A

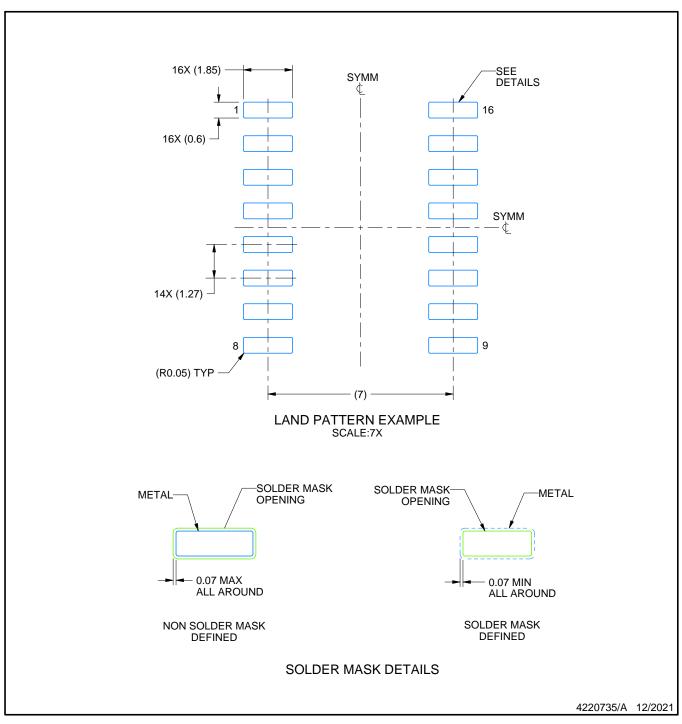
PACKAGE OUTLINE

SOP - 2.00 mm max height

SOP

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- Per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.



NS0016A

EXAMPLE BOARD LAYOUT

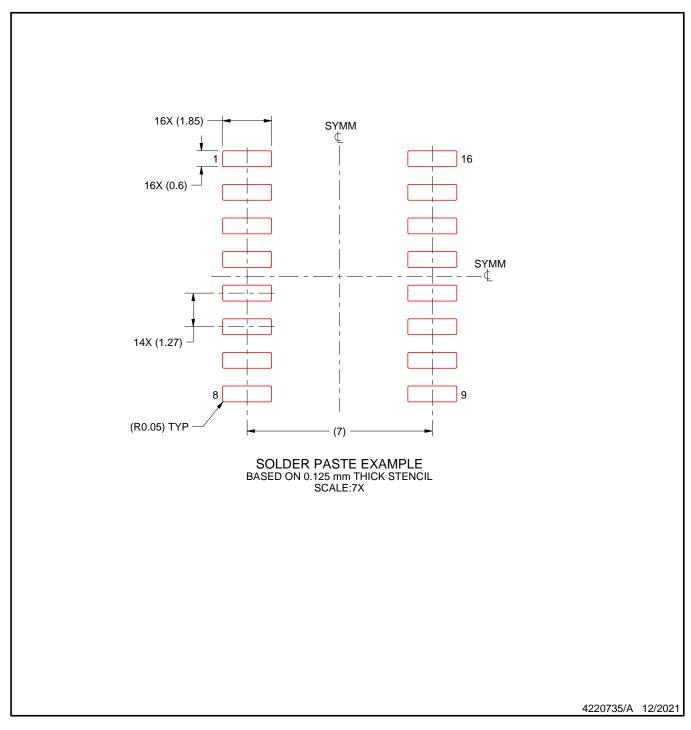
SOP - 2.00 mm max height

SOP

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NS0016A

EXAMPLE STENCIL DESIGN

SOP - 2.00 mm max height

SOP

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated