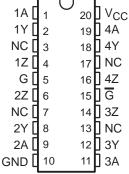

SLLS121D - AUGUST 1990 - REVISED APRIL 1998


- Meets or Exceeds ANSI Standards EIA/TIA-422-B and RS-485 and ITU Recommendation V.11
- **High-Speed Advanced Low-Power Schottky** Circuitry
- **Designed for 20-MBaud Operation in Both** Serial and Parallel Applications
- **Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments**
- **Low Supply-Current Requirements:** 55 mA Max
- Wide Positive and Negative Input/Output **Bus-Voltage Ranges**
- Driver Output Capacity . . . ±60 mA
- **Thermal Shutdown Protection**
- **Driver Positive and Negative Current** Limiting
- **Logically Interchangeable With SN75172**

description

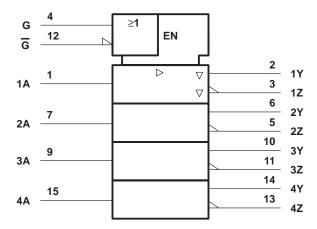
The SN75ALS172A comprises four line drivers with 3-state differential outputs. They are designed to meet the requirements of ANSI Standards EIA/TIA-422-B and RS-485 and ITU Recommendation V.11. This device is optimized for balanced multipoint bus transmission at rates of up to 20 Mbaud. Each driver features wide positive and negative common-mode output voltage ranges, making it suitable for party-line applications in noisy environments.

NC - No internal connection

The SN75ALS172A provides positive- and negative-current limiting and thermal shutdown for protection from line-fault conditions on the transmission bus line. Shutdown occurs at a junction temperature of approximately 150°C.

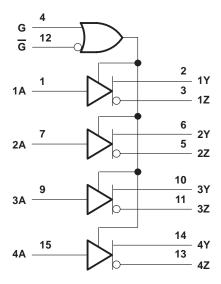
The SN75ALS172A is characterized for operation from 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



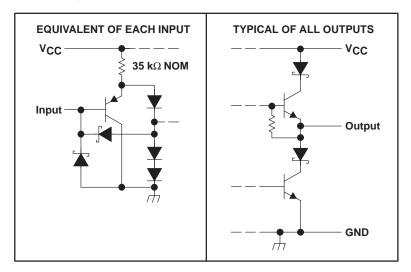
FUNCTION TABLE (each driver)

INPUT	ENA	BLES	OUTI	PUTS
Α	G	G	Υ	Z
Н	Н	Х	Н	L
L	Н	X	L	Н
Н	Х	L	Н	L
L	Х	L	L	Н
Х	L	Н	Z	Z


H = high level, L = low level, X = irrelevant, Z = high impedance (off)

logic symbol†

 $[\]mbox{†}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the N package.


logic diagram (positive logic)

Pin numbers shown are for the N package.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage, V _I	7 V
Output voltage range, V _O	–9 V to 14 V
Continuous total dissipation	
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DW	1125 mW	9 mW/°C	720 mW	585 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level input voltage, VIH	2			V
Low-level input voltage, V _{IL}			0.8	V
Common-mode output voltage, V _{OC}			12 -7	V
High-level output current, IOH			-60	mA
Low-level output current, IOL			60	mA
Operating free-air temperature, T _A	0		70	°C

SLLS121D - AUGUST 1990 - REVISED APRIL 1998

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage	I _I = -18 mA				-1.5	V
VO	Output voltage	IO = 0		0		6	V
V _{OD1}	Differential output voltage	I _O = 0		1.5		6	V
IVonal	Differential output voltage	$V_{CC} = 5 V$,	R_L = 100 Ω, See Figure 1	1/2 V _{OD1} o	r 2‡		V
IVOD2I	Differential output voltage	$R_L = 54 \Omega$,	See Figure 1	1.5	2.5	5	V
VOD3	Differential output voltage	See Note 2		1.5		5	V
Δ V _{OD}	Change in magnitude of differential output voltage§	R_L = 54 Ω or 100 Ω ,	See Figure 1			±0.2	V
Voc	Common-mode output voltage¶	R_L = 54 Ω or 100 Ω ,	See Figure 1			3 –1	V
Δ VOC	Change in magnitude of common-mode output voltage§	$R_L = 54 \Omega \text{ or } 100 \Omega,$	See Figure 1			±0.2	V
IO	Output current with power off	$V_{CC} = 0$,	$V_O = -7 \text{ V to } 12 \text{ V}$			±100	μΑ
loz	High-impedance-state output current	$V_0 = -7 \text{ V to } 12 \text{ V}$				±100	μА
lН	High-level input current	V _I = 2.7 V				20	μΑ
I _{IL}	Low-level input current	V _I = 0.4 V				-100	μΑ
los	Short-circuit output current	$V_0 = -7 \text{ V to } 12 \text{ V}$				±250	mA
laa	Supply current (all drivers)	No load	Outputs enabled		36	55	mA
Icc	Supply current (all drivers)	INO IOAU	Outputs disabled		15	30	IIIA

 $^{^{\}dagger}$ All typical values are at V_{CC} = 5 V and T_A = 25°C.

NOTE 2: See EIA Standard RS-485, Figure 3-5, Test Termination Measurement 2.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_1 = 50 \text{ pF}$

	PARAMETER	TEST CO	ONDITIONS	MIN	TYP [†]	MAX	UNIT
^t d(OD)	Differential-output delay time	$R_L = 54 \Omega$,	See Figure 2	9	15	22	ns
^t PZH	Output enable time to high level	$R_L = 110 \Omega$,	See Figure 3	30	45	70	ns
tPZL	Output enable time to low level	$R_L = 110 \Omega$,	See Figure 4	25	40	65	ns
^t PHZ	Output disable time from high level	$R_L = 110 \Omega$,	See Figure 3	10	20	35	ns
^t PLZ	Output disable time from low level	$R_L = 110 \Omega$,	See Figure 4	10	30	45	ns

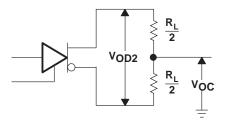
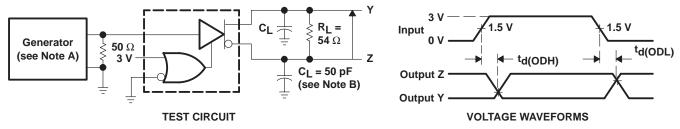
[†] All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

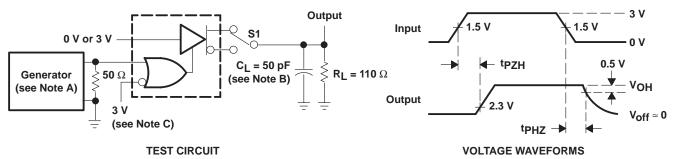
[‡] The minimum V_{OD2} with a 100-Ω load is either 1/2 V_{OD1} or 2 V, whichever is greater.

[§] $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.

In ANSI Standard EIA/TIA-422-B, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS}.

PARAMETER MEASUREMENT INFORMATION

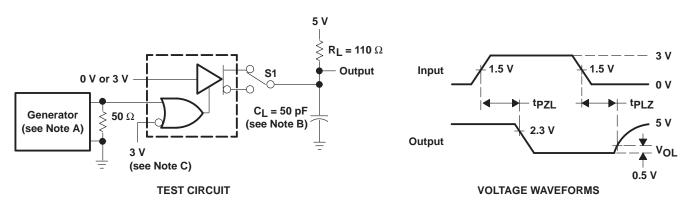




Figure 1. Differential and Common-Mode Output Voltages

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, $Z_O = 50 \Omega$, duty cycle = 50%, $t_f \le 5$ ns, $t_r \le 5$ ns.

B. C_L includes probe and stray capacitance.

Figure 2. Differential Output Test Circuit and Voltage Waveforms


NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, $Z_O = 50 \Omega$, duty cycle = 50%, $t_f \le 5$ ns,

B. C_L includes probe and stray capacitance.

C. To test the active-low enable \overline{G} , ground G and apply an inverted input waveform to \overline{G} .

Figure 3. Test Circuit and Voltage Waveforms, tpzH and tpHZ

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, $Z_O = 50 \Omega$, duty cycle = 50%, $t_f \le 5$ ns, $t_f \le 5$ ns.
 - B. \dot{C}_L includes probe and stray <u>capacitance</u>.
 - C. To test the active-low enable \overline{G} , ground G and apply an inverted input waveform to \overline{G} .

Figure 4. Test Circuit and Voltage Waveforms, tpzI and tpI 7

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN75ALS172ADW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	75ALS172A	Samples
SN75ALS172ADWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	75ALS172A	Samples
SN75ALS172AN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN75ALS172AN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

10-Dec-2020

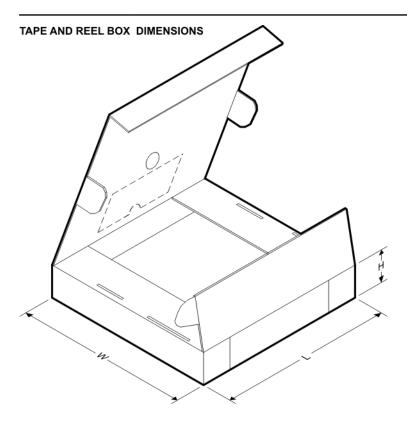
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022

TAPE AND REEL INFORMATION

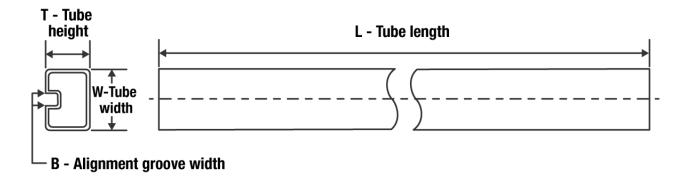
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75ALS172ADWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1

www.ti.com 5-Jan-2022


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Length (mm) Width (mm)		
SN75ALS172ADWR	SOIC	DW	20	2000	367.0	367.0	45.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022

TUBE

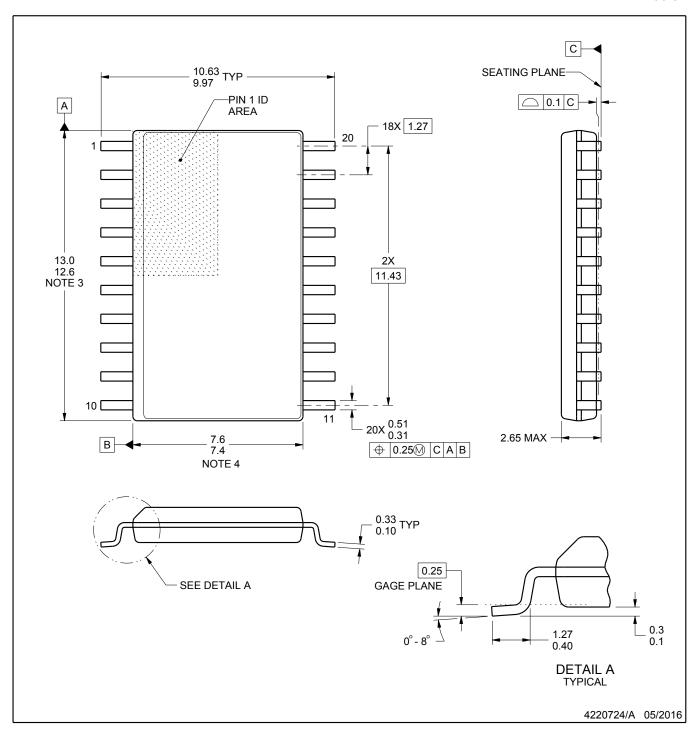
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN75ALS172ADW	DW	SOIC	20	25	506.98	12.7	4826	6.6
SN75ALS172ADW	DW	SOIC	20	25	507	12.83	5080	6.6
SN75ALS172AN	N	PDIP	16	25	506	13.97	11230	4.32

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

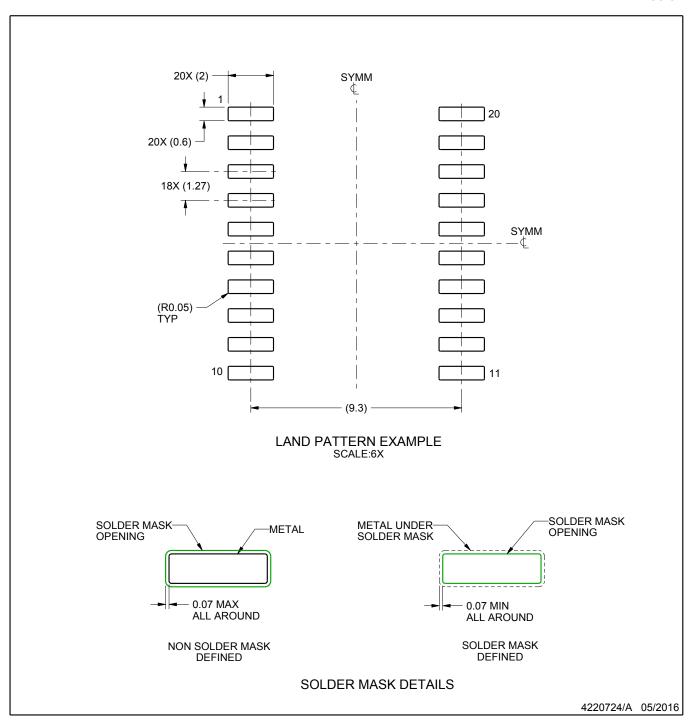
16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

SOIC

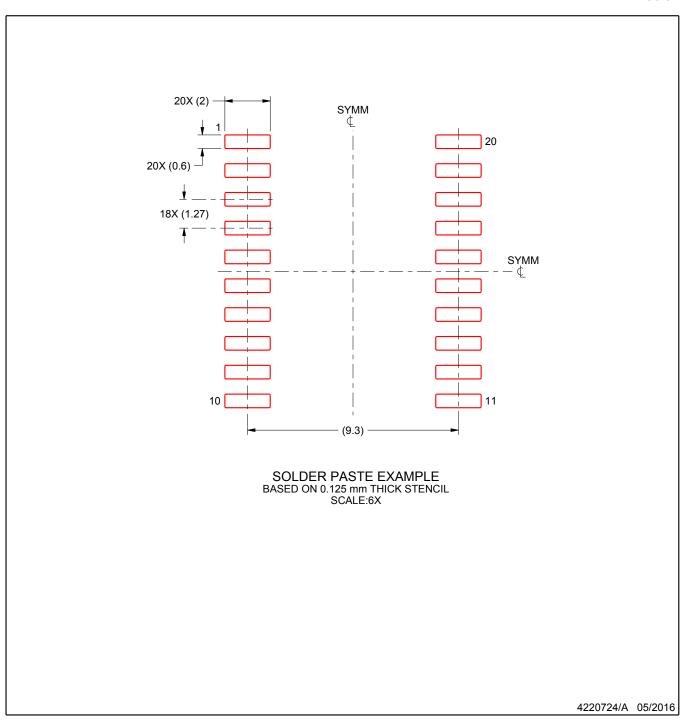
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated